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Abstract—In this paper, we provide a foundation for the def-
inition and composition of multilevel domain-specific modelling
languages. We will introduce modularization techniques such as
composition, aggregation and referencing to enhance flexibility
and reusability of these languages. To explain this foundation, we
use Coloured Petri Nets (CPN) as a paradigmatic case study and
define two CPN variants motivated by industrial collaboration
projects: one used for the definition of protocols and the other
one for robot controllers.

Index Terms—Model-Driven Software Engineering, Model
Transformations, Multilevel Modelling, Coloured Petri Nets

I. INTRODUCTION

Model-driven software engineering (MDSE) it has proven
to be a successful approach in terms of gaining quality and
effectiveness [1]. It tackles the constantly growing complexity
of software by utilizing abstractions and modelling techniques
and considering models as first-class entities in all phases of
software development. MDSE has also demonstrated to be an
effective solution for the definition of industrial DSMLs [2].

However, traditional modelling approaches such as the
Eclipse Modelling Framework (EMF) [3] and the Unified
Modelling Language (UML) [4], have a limitation in the
number of abstraction levels. Enforcing the designers to model
systems within two levels can lead to several problems such
as convolution and accidental complexity [5]. This challenge
becomes more prevalent in the case of defining modelling
languages that are tailored for a specific problem space —
i.e., domain-specific modelling languages (DSMLs) — since
variations of these languages would require further specializa-
tions of the metamodels. Multilevel modelling (MLM) tackles
these problems by removing the limitation in the number of
abstraction levels. Indeed, MLM has proven to be a successful
approach in areas such as software architecture and process
modelling domains [5], [6].

Even though DSMLs are aimed to capture specific domains
and can be understood as unique, not all existing DSMLs are
different among them. The research community in software
language engineering has proposed the notion of Language
Product Lines Engineering (LPLE) for the construction of
software product lines where the products are languages [7].

The key of this approach is the definition of language features
that encapsulate a set of language constructs representing
certain DSMLs functionalities. Taking advantage of MLM
and the concept of feature, we provide mechanisms to define
the abstract syntax and the semantics in a modular way, i.e.,
one can add/remove new dimensions to a selected model or
transformation rule consistently.

In this paper, we present a foundation for the definition
and composition of multilevel DSMLs. We demonstrate the
foundation using a multilevel hierarchy where two special-
izations for Coloured Petri Nets (CPN) [8] are defined. In
this context, we exploit multilevel model transformations (i)
to specify multilevel constraints (that check structural and
semantical correctness of the model), i.e., static semantics,
and (ii) to define model transformations for the definition
of the execution behaviour of the models, i.e., dynamic se-
mantics. Furthermore, we explain how we can reuse these
model transformations, established for one branch, in other
branches. Since the different languages are defined within the
same family [9] (CPN in our case), reusability and flexibility
are key, as the former facilitates sharing features between
the different sub-languages, while the later makes adaptation
easier. We also achieve the capability of composing DSMLs
in a natural way, following the intuition of the Trait [10] and
Mixin [11] concepts in object-oriented programming. Hence,
this paper can be seen as a path to provide solutions to the
challenges exposed in [7] for the reuse of similar DSLs by
taking advantages among the commonalities between them.

We use our tool MultEcore to define both the structure
and the semantics of the MLM hierarchy of CPN [12]. First,
we design the structure using the graphical editor that allows
the creation of multilevel hierarchies, then we define the
behaviour by using the so-called Multilevel Coupled Model
Transformations (MCMTs) [13], [14]. MCMTs are in this
paper extended to specify both multilevel constraints and
reusable CPN behaviour. Note that this way we can specify
both static and dynamic semantics using the same constructs.
For this, we take advantage of the improvements we have made
to the so-called supplementary hierarchies, which incorporate
new dimensions to the CPN hierarchy. This work was intro-



duced in [15] where a supplementary hierarchy was defined
to integrate data types to a multilevel hierarchy.

We transform MLM hierarchies and their MCMTs to Maude
for execution and simulation purposes. Maude is a high-
level language and a high-performance interpreter in the OBJ
algebraic specification family [16]. This way, we ensure the
correctness of the designed hierarchies and their behaviour.
In [17] we describe the infrastructure that allows us to trans-
form both the multilevel hierarchies and the MCMTs from
MultEcore to Maude, perform the rewriting of our models
applying the constraints/rules and then transform the results
back to MultEcore. The semantics of the model executed
in [17] is less complex than the one presented in this paper.
Thus, we do not perform execution of models but we focus
on describing the multilevel transformation rules and set the
base for future work in this direction.

We decide to use MultEcore as some of its key features
make it possible to construct the case shown in this paper. For
instance, the use of supplementary hierarchies to incorporate
aspects in our models that are not strictly related to the domain
being modelled, or the MCMTs for specifying the semantics.

The paper is organised as follows. In Sect. II we introduce
basic concepts and notations on CPN that are used along the
rest of this paper. Sect. III describes the running example
focusing on the structural aspects. In Sect. IV we complete
the hierarchy shown in Sect. III by providing constraints
(Sect. IV-A) and describing the behaviour (Sect. IV-B). In
Sect. V we discuss related work. Finally, Sect. VI concludes
the paper and outlines directions for future work.

II. BACKGROUND

Coloured Petri Nets [18] belong to the family of high-
level Petri nets [19], which are characterized for combining
classical Petri nets [20] with a programming language [21].
The use of a programming language, Standard ML (SML) in
CPN, provides the primitives for the definition of data types,
for describing data manipulation and for creating compact
and parameterisable models. One advantage of CPN is that
they contain few but powerful modelling constructs. However,
CPN is not designed to be easily extended with domain-
specific features, despite several recent applications of CPN
have shown that it would be beneficial to be able to develop
domain-specific variants [22]. Furthermore, two ongoing in-
dustrial collaborative projects have only confirmed the need
for domain-specific CPN variants.

Fig. 1 shows a small example of a CPN model. It can be
understood as the client-side of an Internet of Things (IoT) like
protocol. The model depicts a scenario where temperatures
from external sensors would be read. These temperatures
would then be processed, creating signals to, for example,
turn a heater on or off if the temperature goes above or
below certain thresholds, and finally send the signal out to
the external actuator.

A CPN model describes the states (places, drawn as ellipses)
of the system and the events (transitions, drawn as rectangles)
that can cause the system to change its state. Arcs can connect
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Fig. 1. CPN model for a temperature reader

places to transitions or vice versa, but it is illegal to connect
places with places or transitions with transitions. We explain in
Sect. IV-A how this kind of constraints can be specified using
MCMTs. Each place has an associated type (also called colour
set in CPN terminology) determining the kind of data that the
place may contain. A place can hold an arbitrary number of
tokens that provide the marking of the place. For instance, in
Fig. 1, IncomingTemperature and OutSignal places have
INT and STRING as types (corresponding to the primitive types
Integer and String), respectively.

Initial tokens in CPN models are produced by the so-called
initial marking expressions. Specifically, the evaluation of the
initial markings provides the tokens that the initial state of
the model will contain. The state of a CPN is a marking
of the places of the CPN model. The actions of a CPN
consist of occurrences of enabled transitions. For a transition
to be enabled it must be possible to find a binding of the
variables that appear in the surrounding arc expressions of
the transition such that the arc expression of each input arc
evaluates to a multi-set of token colours that is present on the
corresponding input place. The types of the arc expressions
need to conform to the types of the places they are connected
to. When a transition occurs with a given binding, it removes
from each input place the multi-set of token colours to which
the corresponding input arc expression evaluates. Analogously,
it adds to each output place of the transition the multi-set of
token colours to which the expression on the corresponding
output arc evaluates. Such an occurrence changes the marking
of the CPN model. Notice that the model in Fig. 1 does not
show any token as we just want to show the structure (neither
there is any initial marking specified). As mentioned above,
the specific tokens added and removed by the occurrence of
a transition are determined by the arc expressions, which are
positioned next to the arcs (e.g., t and “ON”).

In addition to the arc expressions, it is possible to attach a
boolean expression to each transition. This boolean expression
is used as a guard on transitions (e.g., [t>=maxtemp]). It
specifies an additional requirement for the transition to be
enabled (see [18], [23] for further details on CPN).

III. MULTILEVEL INFRASTRUCTURE FOR CPN DSMLS

MLM techniques match well with the creation of DSMLs,
especially when we focus on behavioural languages since



behaviour is usually defined at the metamodel level while
it is executed at least two levels below (i.e., at the instance
level) [24].

In order to facilitate the definition of domain-specific CPN
variants, we have designed a MLM hierarchy to capture
the structure and behaviour of a family of CPN models.
The proposed infrastructure allows to incorporate/create new
branches and modify the existing ones in a flexible way.

Figure 2 shows the complete CPN multilevel hierarchy us-
ing the MultEcore tool [14]. Figure 2a shows the generic_cpn
metamodel which captures general purpose CPN. We can see
the root node representing a Net in the top left corner of
Fig. 2a. A net contains Nodes (which can be either a Place
or a Transition), Arcs and Expressions. Expressions are
used to represent CPN inscriptions (expressions) which in the
current CPN Tools are defined using SML [25]. Also, a Place
might hold several Tokens. A Transition can have several
associated Bindings. The bindings are created by assigning
Values to the free Variables of the transition (these free
variables are detected by analysing the expressions of the arcs
connected to the transition). The annotations in the rectangles
at the top of the classes, and after the names in the arrows
(separated by ‘@’) specify the potencies.

Potency is used on elements as a means of restricting
the levels at which this element may be used to type other
elements. A potency specification includes three values: the
first two specify the first and the last levels where one can
directly instantiate an element (min and max), and the third
value, the number of times the element can indirectly be re-
instantiated (depth). Note that we specify the potencies of
the elements as (1-*-*) since a concept might be instantiated
several times. However, the concept Token should not be
redefined and therefore the only instantiation could be done
at the instance level. We do not show the instance level in
Fig. 2 which would correspond to instantiations (snapshots)
in a level below the protocol_config model represented in
Fig. 2d. One can see (at the bottom right corner of Fig. 2a
that the potency for such an element is expressed as (3-*-1),
since we want to allow only one instantiation (depth = 1) of
Token three (min = 3) or more (max = *) levels below—where
‘*’ means unbound.

The next level on the hierarchy provide concepts for two
different domains from the knowledge extracted by working
with respective industrial partners. One could argue that such
specializations can be carried on using inheritance in the same
metamodel. However, this would lead to one bigger metamodel
where specializations on elements (e.g., Place) that belong to
different domains are put together and further extensions in
each domain would be handled in such same metamodel. We
rather introduce these levels to enhance modularization and
separation of concerns, as MultEcore is designed to easily
add such levels. The first one, called cpn_protocol (Fig. 2b),
is aimed for CPN used to define protocols. For instance,
QueuePlace is specified so it would incorporate the notion
of Queue. Note that tokens in regular CPN places can be
removed no matter the order they arrived to a place. In several

protocols, however, order is a major feature that needs to be
preserved. A ResetArc that connects a place with a transition
empties all the tokens of the place whenever the transition
is fired. This is useful as a “cleaning mechanism” in models
that capture certain environments where messages might be
retransmitted and buffers could accumulate old messages.
Furthermore, InhibitorArc is used to reverse the logic of an
input place. With an inhibitor arc, the absence of a token in the
input place is what enables it, not its presence. For instance,
they can be used to delay certain actions until a system is idle,
or to wait until the end of a loop.

The second CPN variant is cpn_controller (Fig. 2c) where
InPlace (input) and OutPlace (output) are aimed to share
information (introduce, or send, respectively) from the model
with an external resource. For instance, InPlace will be used
to introduce information from the outside environment to the
model, and therefore it cannot be the target of any arc as it
cannot receive tokens coming from the model. Analogously,
OutPlace can only push information out, and it cannot be
the source of an arc in the model. In CPN, arc expressions are
built from typed variables, constants, operators, and functions.
However, a requirement for an arc connected to an InPlace or
an OutPlace is that the expression of such an arc can only be
a variable that carries the information shared with the external
environment.

The model defined in Fig. 2d represents a specific configu-
ration for the protocol domain (protocol_config). We do not
show a controller configuration for the lack of space, but it
could be defined likewise. Models in the lowest level contain
specific instances of the concepts defined in the levels above
and they are used to specify concrete CPN configurations.
Note that in our example, the controller branch is used for
specifying constraints on the protocol hierarchy. One can see
this as an application of Referencing (see [7] for details).

The CPN hierarchy we describe (Fig. 2) is called application
hierarchy, and it can be understood as the main hierarchy. Ap-
plication hierarchies can optionally include an arbitrary num-
ber of supplementary hierarchies, which add new dimensions
to the application one. Using MultEcore, model designers
can work with different multilevel hierarchies and fuse them
with each other. This allows the concepts to have at least
one type from the levels above in the application hierarchy
and potentially one other type per incorporated supplementary
hierarchy [12], [13]. This structure enhances modularization.
The facility of adding/removing supplementary hierarchies is
aligned with the Aggregation technique for language modu-
larization [7] which provides a strong separation of concerns
and strengthen reusability.

In our case, we consider the protocol branch as the appli-
cation hierarchy which has three supplementary hierarchies:

Data types. A key difference of CPN (with respect to
traditional Petri nets) is that one can define data types for the
models. Data type declarations might include primitive data
types (String, Integer, . . . ) or user-defined data types.

Error. One of the novelties we are exploring is the possibility
to specify constraints that would raise errors when construct-
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Fig. 2. CPN multilevel hierarchy

ing the models. Giving the elements of the model an extra
supplementary type for errors would allow us to “tag” such
elements when some constraint is violated.

Controller. We are also exploring a way to reuse concepts
(and their semantics) from other branches; we have permitted
to use the controller branch as a supplementary hierarchy, as
the semantics of some concepts defined in cpn_controller will
be useful for the cpn_protocol model shown in Fig. 2d.

We neither show Data types nor Error supplementary hi-
erarchies (Error would only consist of one model with one
class since this hierarchy is used to tag elements violating the
constraints, and for this purpose it is sufficient to use such

a simple supplementary hierarchy). However, we present in
Fig. 3 a sketch of the situation where the application hierarchy
incorporates supplementary ones. For the example, we have
chosen the OutSignal element from the Protocol hierarchy.
The type of this element, which comes from the application
hierarchy, is defined in the level above. It also has OutPlace
as supplementary type from the Controller hierarchy (right-
side in Fig. 3) and String from the Data types hierarchy
(left-side in Fig. 3). Notice that supplementary types can be
used across different models (and levels) in the application one
(for instance, in the SNAPSHOT level, tokens will be carrying
supplementary data types as well).
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The model cpn_protocol shown in Fig. 2d models the same
behaviour as the CPN model shown in Fig. 1. Now we describe
the model and highlight the key points where it gets benefits
from the possibilities of extending the CPN concepts. Incom-
ingTemperatures (top left of Fig. 2d) receives temperature
values from an external source. One can see that this element is
of type QueuePlace defined one level above in cpn_protocol
(Fig. 2b) and it also has as supplementary type InPlace
(expressed in cpn_controller, Fig. 2c). Having such types
will give us the possibility of applying the semantics defined
for both QueuePlace and InPlace. As explained above, one
of the requirements for InPlace is that arc expressions of
arcs going out of such a place can only be variables. This
can be depicted in Arc1Expression where the supplementary
type is Variable. The temperature will be then transferred to
Temperatures which is of type QueuePlace (to preserve the
order of the different temperatures received). Temperatures
is connected, via Arc3 and Arc4, to two transitions, ON and
OFF, respectively (bottom right of Fig. 2d). In this part of
the model, a signal to turn a heater on will be sent if the
temperature read is below the minimum temperature of the
system (expression=t<=mintemp in ONGuard element).

Analogously, a signal to turn the heater off will be
sent if the temperature is above the maximum tempera-
ture (expression=t>=maxtemp in the OFFGuard element).
Finally, the OutSignal element will send out the signal
generated by the model. The supplementary type OutPlace
provides the additional behaviour (already explained) to such
an element. Note that protocol_config (Fig. 2d) represents the
structure of the modelled environment. An executable model
would consist of a snapshot of protocol_config (instantiated
in a level below) which is obtained by evaluating the initial
marking expressions that produce the initial tokens.

IV. MULTILEVEL COUPLED MODEL TRANSFORMATIONS

We have shown a multilevel configuration composed by
two CPN variants. This section describes how we define the
semantics for these models. Note that semantics of CPN are
defined by a combination of model transformations and the
functionalities of an orthogonal programming language which
corresponds to the use of SML in CPN. The programming

language takes care of the evaluation of expressions and type-
correctness. In the following, we focus only on the model
transformations part and hint the semantics that the program-
ming language should accomplish for a complete specification.

Transformation rules can be used to represent actions that
may happen in the system. Conventional in-place model trans-
formations (MTs) are rule-based modifications of a source
model (specified in the left-hand side of the rule) resulting
in a new state of such a model (determined by the right-hand
side). The left-hand side takes as input (a part of) a model
and it can be understood as the pattern we want to find in
our original model. The right-hand side describes the desired
behaviour we want to acquire in our model and thereby the
next state of the system. There is a match when what we
specify in the left-hand side is found in our source model and
the execution of the rule represents a single transition in the
state space.

MCMTs have been proposed as a mean to overcome the
issues of both the traditional two-level transformations rules
and the multilevel model transformations. While the former
lacks the ability to capture generalities, the later is too loose
to be precise enough (case distinctions) [14]. In this section we
describe two applications of MCMTs. First, and as a novelty,
for defining multilevel constraints, and second, to specify the
behaviour of a multilevel DSML. Both of them reflect the
new improvements and extensions we have incorporated to the
MCMTs version described in [14]. Such improvements allow
us to reason about the semantics that a complex modelling
language such a CPN demands.

A. Multilevel constraints

Constraints are commonly specified using a constraint lan-
guage, such as the Object Constraint Language (OCL) [26].
While these languages fit perfectly for defining constraints
when they are applied in traditional two-level approaches, they
might not be so appropriate for a multilevel setting. One could
argue that defining OCL constraints on the superclass would
solve the problem. However, this would imply to flatten the
multilevel hierarchy into one level leading to concerns that
MLM aims to solve. Even though there exists approaches that
explore deep constraint languages for multilevel settings [27],
the rule must refer to which level(s) it will affect (scope). With
MCMTs, we avoid having to refer explicitly to the levels so,
for instance, vertical extensions on the hierarchy would not
affect the rules.

One of the capabilities of MCMTs is the possibility to
specify multilevel constraints to check the semantical correct-
ness of our models. Note that the constraints we describe in
this section are formulated as transformation rules. In this
section, we outline the usage of MCMTs for the definition
of 3 multilevel constraints of which 2 are applicable to all
CPN language variants and 1 is specific for a branch in the
MLM hierarchy.

Illegal Arcs: Fig. 4 shows a constraint called IllegalArc
that is triggered when an arc between two places is found.
The META block allows us to locate types in any level of the
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Fig. 4. Constraint IllegalArc: An error is triggered when an arc between two
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hierarchy that can be used in FROM and TO blocks. But the
actual power of the META comes from the fact that we can
use it to define an entire multilevel pattern. At the top level,
we mirror part of generic_cpns (Fig. 2a), defining elements
like Node, Arc, Place and Transition as nodes, and source
and target as edges, that can be used directly as types in the
FROM and TO blocks. One of the extensions on MCMTs we
have made is the possibility to handle inheritance relations in
the rules, e.g. Place and Transition inherit from Node. In
this case, Place and Transition can be connected to Arc via
a source or a target edge. These elements are defined as
constants, meaning that the name of the pattern element must
match an element with the same name in the MLM hierarchy
on which we apply the rule.

A match of this rule is when the elements of the MLM
hierarchy coupled together with their types fit two instances
of Place which have relations of type source and target to
an instance of Arc. Hence, if in the model we find a pattern
where a place p1 is connected to another place p2 with an arc
(FROM block) then we apply the changes specified in the TO
block. In this case, we take advantage of the supplementary
dimension adding the type Error to arc. This is just a way
to notify the modeller that there is a mistake in the model
without performing any reparation; it is up to the modeller to
make the correcting changes.

The levels specified in an MCMT rule do not need to be
consecutive, providing a more flexible definition. There might
be several levels in between the blocks FROM/TO and the
upper level. This is represented by the three dots in Fig. 4.
This means that this rule can also be applied for every variant
of the CPN language we are working with (i.e. the left or
right branches shown in Fig. 2). Moreover, even if we add
new levels in between, the rule would still be applicable. This
is possible because we allow the types of the elements in
FROM/TO to be transitive (i.e., indirect typing). For instance,
in the FROM block of Fig. 4, the element p1 will match any
node which directly or indirectly has Place as type. Whether
p1 has as type Place or, for example, OutPlace, there will
be a match and therefore an error will be detected indicating
that it is not possible to have an arc between two elements of
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Fig. 5. IllegalType: Illegal typing between arcs and connected places

the type Place/OutPlace. As mentioned in Sect. II, it is also
illegal to have arcs between two transitions. We need to define
another constraint for specifying this constraint, however, we
do not show this rule since it is essentially similar to the one
shown in Fig. 4; the only difference is that variables p1 and p2
(they might be called t1 and t2) would be typed by Transition
instead of Place.

In the example above, we just need to specify the constraint
one time and it is applicable, not only to instances of places
and transitions, but also for instances of the specializations of
such elements made in levels below. This reusability would not
be possible, for instance, with OCL, where we would need to
write specific constraints for the elements defined in models
below. E.g, for both QueuePlace in Fig. 2b or OutPlace
in Fig. 2c, we would need to specify rules that disallow the
creation of arcs between two of any of those elements.

Illegal Type: Another constraint which applies to all CPN
language variants is that the type returned from the evaluation
of an arc expression needs to conform to the type of the
place where it is connected. For instance, it is illegal to have
a place with type String connected to an arc that evaluates
to Integer. IllegalType constraint shown in Fig. 5 checks the
aforementioned property. Precisely, this rule captures illegal
types between input places and their correspondent arc ex-
pression on arcs connected to them. The ellipses in the right
top corner present in p1 and a1exp are aimed to express their
types (from the data types supplementary hierarchy). Since A
and B are different variables and we can bind them to different
types, the match would success returning the mistake detected
in the model. If so, error tags (from the Error supplementary
hierarchy) may be added to p1 and a1 elements (TO block).
We omit the rule for output places due to similarity.

Illegal Outplace: The third constraint IllegalOutPlace for-
bids the possibility of having an arc that has an instance of
OutPlace as source (see Fig. 6). Recall that in the controller
domain, out-places are used to share information with the
external environment, and therefore they cannot be used to
pass information inside the model. The figure shows two levels
specified in the META block, separated by the red double-line.
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Like the constraints already explained, the three dots “. . .”
between the specified meta levels enhance the flexibility of the
rule making it applicable in several cases without modifying
it. Also, it leads to a more natural way of defining that a type
is defined at some level above, without the need of saying
explicitly in which level. The concept OutPlace defined in
the second META level is a constant like the concepts defined
in the top META. When an arc has as source (a_s) a place p1
of type OutPlace and we find a transition t1 as target (a_t),
the place p1 is updated with the extra type Error notifying
that there is a mistake in it.

A similar constraint is used to detect whether an InPlace
is the target of some arc. InPlaces (and OutPlaces) can
be understood as some sort of interfaces that are input (and
output) points in the model which are connected to external
resources. Thus, it is not possible to have transitions that
produce tokens in InPlaces. However, we do not show such
a constraint since it is essentially the same as Fig. 6. The
only differences would be in the type of p1 (which should
be InPlace) and in the types of the edges that connects arc
with p1 and arc with t1 (they should be target and source,
respectively). Also InPlace shall be declared in the second
META level instead of OutPlace.

B. MCMTs for defining behaviour

MCMTs can be also used for describing the behaviour
of a system. Specifying multilevel transformation rules that
allow the execution of a model with MCMTs follows the
same logic as the one presented in Sect. IV-A. However,
they belong to two different stages. While the constraints are
checked during the modelling process to analyse structural
and semantical correctness, rules that describe the behaviour
will be executed once the model has been initialized and
instantiated one level below. In this section we display the
behavioural rules that describe how CPN models are executed.
An execution of a CPN model is, in general, described by
means of an occurrence sequence.

As mentioned in Sect. III, we describe the behaviour of
CPN models by model transformations together with a pro-
gramming language which is used to define and evaluate the
expressions and guards. First of all, we indicate three functions
that should be implemented by the chosen programming
language. Var(e) is a function that takes an expression e and
returns the variables used in such an expression. Eval(e, b)
evaluates an expression e over a binding b, and provides the
multiset of tokens to be removed (if it is an input arc) or
added (if it is an output arc) from the place connected to the
arc. Type(e) returns the type of an expression e.

The rules perform a step from one state to the next one
during the simulation of a model. Such a step is performed
when an enabled transition is fired. Recall that, for a transition
to be enabled, it must be possible to find a binding of the
variables that appear in the surrounding arc expressions that
evaluates to a multi-set of token colours that is present on each
corresponding input place. Then, the occurrence of a transition
with a given binding removes from each input place tokens
to which the corresponding input arc expression evaluates.
Finally, it adds to each output place the tokens to which the
expression on the corresponding output arc evaluates.

It is important to mention that there is not a direct relation
between the tokens residing in a place and the binding of the
transition connected to such a place. First, a transition can
have assigned an arbitrary number of free variables that come
from all the variables used in the arc expressions connected
to the transition. Second, the bindings of the transitions are
calculated assigning values to those free variables of the
connected arcs (both input and output arcs). The bindings are
static and do not change as long as the arc expressions are not
modified. Thus, we assume there is a step before being able to
simulate the model, where all the bindings of the transitions
in the model are previously computed (for this, it will be
necessary to use the function Var(e) for every expression e
of each arc connected to the transition).

A first rule called EnableTransition and shown in Fig. 7
creates the relation between the tokens that might be consumed
from a place determined by the evaluation of the binding
with the arc expression — this is provided by the function
Eval(e, b). It also creates the new tokens that can potentially
be added to the output places connected to the transition. Note
that these new tokens are not connected to output places, as
the transition has not been fired yet. Variables [M] and [N]
in the META level on the sourceArcs and token relations,
represent the cardinality that have to be matched in order to
apply the rule. An arbitrary number of places can be connected
to a transition via input arcs. All the expressions of those
input arcs have impact on selecting the tokens that might
be removed from the connected places. Analogously, all the
expressions of the output arcs have impact on producing the
new tokens in the output places. We do not show the default
multiplicities in Fig. 2a which is 0..* for sourceArcs and
token relations. This means that [M] and [N] will be bounded
to *, expressing that the match needs to be done with the
biggest set of elements comprised in the dashed boxes that
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Fig. 7. Rule EnableTransition: enables a transition through evaluating the arc expressions with the bindings

fulfil the pattern defined in the FROM/TO blocks. When the
multiplicity has been explicitly specified in the META level of
the rule and we have instantiated those same variables for the
multiplicities in the FROM block, then the rule will take that
into consideration during the matching process. In the case of
M, a successful match will occur when all the places (pl) that
are connected to a transition tr via an arc are found. Having
tr (in FROM block) out of the biggest dashed box makes sure
that there is only one transition to which all the tuples arc-
arcxpr-pl-token are connected. Note that a place can also
hold an arbitrary number of tokens that might be affected by
the evaluation of the binding against the correspondent arc
expression. We therefore wrap the relation pl_tk and the node
tk in another box bounded with the variable N. The way we
define and use these multiplicities is inspired by the concept
of cardinality described in [28].

The execution of this rule (FROM → TO) defines which
tokens can be removed from the input places connected to the
transition tr (it also defines which tokens can be produced in
the output places).

In this step, for each j binding (bind), the function
Eval(expr , bind) is called taking each arc expression expr
and the bind to select the tokens that can be removed from
each place (if there are enough). Note that the biggest dotted
shape (with the cardinality j) captures that a transition might
have several bindings. The dotted box inside the biggest one
(scoped with the cardinality i) expresses that a binding is
composed of i variables var with each one having a value
val assigned (see bottom right of Fig. 7). We use a different
notation for the boxes as they are conceptually different. Even
though they both express replication of the elements inside
them, the dashed boxes are aimed to express the cardinality
for the amount of elements to be found in the model, while the
dotted boxes represent information that will be handled by the

programming language. Notice in the TO block there is a new
dotted box that wraps b_tk edge and tk node. This displays
that bind has associated k tokens that can be removed on the
occurrence of the transition. The dotted box that bundles b_ntk
and ntk is, in a similar way than the previous box, capturing
the new tokens that come from the evaluation of bind against
the expression of each output arc (for simplicity, we do not
show neither the output arcs nor the output places in the rule).
As mentioned before, these new tokens have not really been
produced yet, as this is performed when a transition is fired,
therefore there are not yet relations between the new tokens
(ntk) and the output places.

Recall that a transition is enabled if the required tokens
are present on input places connected to input arcs of the
transition. An occurrence of a transition removes tokens from
input places, and adds tokens to output places connected to
output arcs of the transition. We show in Fig. 8 the rule
Occurrence of an enabled transition. The FROM block depicts
the situation after the execution of the EnableTransition rule
(Fig. 7). Again, M, N and O in the META block are variables
to be matched with the multiplicities in the CPN model. On
one hand, for each input place p1 connected with an arc
a1 to a transition tr (captured by the dashed shape with the
variable M), we select the subset of N tokens tk that reside
in p1 and have been picked by applying Eval() function for
each arc expression with the selected bind in tr (this was
already done in EnableTransition rule). Each k selected token
(dotted rectangle wrapping b_tk and tk) has an edge b_tk
between bind and tk. On the other hand, we have each output
place p2 connected with an arc a2 to tr (defined by the
dashed shape with the O variable). Recall that the execution of
EnableTransition rule created the potential tokens that would
be added in the output places (resulting from the evaluation
of each output arc expression with the binding of tr) in case



the transition were fired. These l new tokens are represented
by ntk connected to bind via the relation b_ntk, and they are
wrapped by the dashed box with l cardinality.

As the result of executing the Occurrence rule, (in TO
block), the chosen tokens tk are removed from each input
place p1, and the new tokens ntk are added to each output
place p2. Note that the binding is not removed (as it does not
change during the simulation) but it is cleaned so it can be
used again in the next state of the model.

A third rule called DisableTransition might be specified for
disabling transitions. This rule is similar to EnableTransition
but it has the opposite effect. We do not show such a rule
but state its intuition. When a transition is fired, it changes
the marking of the model and some places that had tokens
before might be empty after the occurrence. It is necessary
to re-evaluate (disabling and enabling again) the model and
calculate again which transitions can be enabled.

The constraints and behavioural rules presented in this sec-
tion perform the first step towards the simulation of multilevel
CPN models. The current state of MultEcore relies on a
bidirectional transformation to Maude, in which the models are
executed and their states are returned to the modelling tool. As
discussed Sect. III, one of the key points of our approach is the
reusability and flexibility of the transformation rules. Although
the rules explained in this section specify the behaviour of
general CPN models, they can be reused for various CPN
variants (differing from the protocol and controller examples)
since they are defined at a higher level of abstraction in the
hierarchy (see [17] for details).

V. RELATED WORK

In this section, we present other approaches to the definition
of infrastructures for modelling and executing behavioural
DSMLs. In [29], [30], the authors present transformation
product lines. This approach facilitates systematic creation
of transformations for language families. Similarly, authors
in [31] propose featured model transformations (FMTs) which
can bee seen as a kind of metamodel that integrates the
variability of a whole family of metamodels. Our approach
considers not only the reusability of the transformation rules
within the same family, but also allows the incorporation of
orthogonal languages. In [27], the authors present an approach
to transform a multilevel hierarchy to a two-level configu-
ration (and vice versa) by adapting the ATL transformation
language [32] making it “multi-level aware”. Our approach
goes one step further and facilitates the definition of multilevel
model transformations and the behaviour of multilevel DSMLs
by using MCMTs.

In the Language Product Lines Engineering field [7],
Melange [33] is a tool that supports the construction of DSLs
that supports modular language design and language modules
composition. Operational semantics of a DSL involves the use
of an action language to define methods that are statically
introduced directly in the concepts of the DSL abstract syntax.
In our approach, we define the semantics separately, by means
of MCMTs, avoiding the need to change the abstract syntax

(i.e. the multilevel hierarchy) of the DSML. MontiCore [34]
supports the construction of textual DSLs where the abstract
syntax is defined in BNF-like grammars. Languages can
extend each other and can be embedded within each other.

We find some relevant work in the context of modular
modelling. Reuseware [35] is a metamodel-agnostic approach
to aspect-oriented modelling (AOM). The process for the
composition requires the designer to manually define the
addressable points which are used to specify either fragments
of a model or points to be replaced by a fragment from some
other model. In our approach we aim to be as less invasive as
possible during the composition process.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described an infrastructure for the
definition and composition of multilevel DSMLs. We have pro-
posed MCMTs to describe both (i) multilevel constraints (that
check the structural and semantical correctness of models) and
(ii) the reusable and flexible description of the behaviour of
multilevel models. Moreover, we have used supplementary
dimensions where new additional types can be added to
elements in an MLM hierarchy. A key advantage that comes
from the use of supplementary hierarchies (and therefore, the
use of more than one dimension) is the combination of DSMLs
to build more complete models that can be executed. This
opens up for flexibility and reusability when defining related
languages tailored for specific domains.

We have established a foundation for the use of MLM
composition to describe behaviour based on the semantics
of more than one DSML — in a way similar to what was
done for two-level DSMLs in [36]. We believe that further
investigation in this direction will lead us to the application of
modularization and composition techniques, as detailed in [7],
to exploit reusability in the development of DSMLs. Although
we have outlined in the model transformations for enabling
and firing transitions, the choice of the programming language
for the evaluation of arc expressions, type checking or token
generation is left open for future work.
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