
Multilevel Modelling with MultEcore: A
contribution to the MULTI Process challenge

Alejandro Rodríguez1
1 Department of Software Engineering, Sensor Networks

and Engineering Computing
1Western Norway University of Applied Sciences

Email: arte@hvl.no1, fmac@hvl.no2

Bergen, Norway

Fernando Macías1,2
2Department of Informatic and Telematic Systems

2University of Extremadura
Email: fernandomacias@unex.es

Cáceres, Spain

Abstract—The MULTI Challenge is intended to encourage the
Multilevel Modelling research community to submit solutions to
the same, well described problem. This year the subject domain
has been changed with respect to previous editions (MULTI
Bicycle challenge in 2017 and 2018). This paper presents one
solution in the context of process management, where universal
properties of process types along with task, artifact and actor
types together with possible particular occurrences for scoped
domains are modelled. We discuss our solution highlighting
both the strengths and limitations of our approach, using the
MultEcore tool.

I. INTRODUCTION

Research in Multilevel Modelling (MLM) is continuously
increasing. The MULTI challenge was created to enhance
discussion and facilitate the contributions within the MLM
community. Encouraging researchers to submit solutions to
a common challenge makes it possible to compare them
and fosters improvements in the same direction. We use the
MultEcore tool [1] to apply various MLM features which are
key to be able to fulfil the criteria established for the MULTI
Process challenge [2]. MultEcore enables multilevel modelling
through the Eclipse Modelling Framework (EMF) [3], and
therefore allows reusing the existing EMF tools and plugins.
The MultEcore tool is available in [4] and the solution to this
challenge can be downloaded in [5].

With MultEcore, modellers can configure flexible multilevel
hierarchies that can be composed to include new features.
This is mainly done by the definition of application and
supplementary dimensions. First, application hierarchy can be
understood as the main multilevel hierarchy (base language
module in the context of language product line [6]). Second,
supplementary hierarchies are used to add new dimensions
to the application one. Application hierarchies can include
several supplementary hierarchies which can also be removed
consistently without introducing inconsistencies.

We also take advantage of some of the last features we
are working in with regard to the specification of constraints
(static semantics) and behaviour description (dynamic seman-

tics) by using Multilevel Coupled Model Transformations
(MCMTs) [7], [8].

The key aspects that characterize our conceptual framework
and have been applied to solve the challenge are summarized
as follows:

• The definition of multilevel hierarchies in a flexible way
has allowed us to create tree-like structures where the
commonalities of the language are defined once, and the
branches can be separately specified and instantiated in
a controlled manner by using the notion of potency (i.e.,
to restrict the level at which an element can be used to
type other elements).

• Being able to define several supplementary hierarchies
helped us accomplish some of the requirements of the
challenge. This will be further discussed along the paper.

• Specifying MCMTs allows us not only to define generic
rules that apply to the general language defined at the
most abstract level, but also to create tailored rules that
might apply to one of the domains. MCMTs can also
make us of concepts defined in different hierarchies.

In this edition, the challenge concerns the domain of process
management, a domain in which one is not only interested
in particular occurrences (i.e., “processes” = “processes in-
stances”, “tasks” = “task occurrences”), but also in universal
aspects of classes of occurrences (“process definitions”, “task
types”) and relations to actor types and artifact types. Note
that we stick to the British style, however, we use artifact
instead of artefact to be aligned with the challenge description.
Respondents are required to define first, universal concepts for
process management, and second, an application of such a con-
ceptualization in the scope of a particular software engineering
process. Optionally, one can also capture a different scope for
the insurance domain. In order to highlight the flexibility of
our framework we provide a multilevel hierarchy where both
domains are included.

The rest of the paper is organised as follows. We discuss in
Sect. II relevant aspects of the case presented in the challenge



and in the context of the solution approach. Sect. III describes
the complete scenario that contains the multilevel architecture
built for this challenge. In Sect. IV we discuss the solution and
cover the key points that are required to be explicitly reasoned.
We also examine the limitations and the requirements that
could not be satisfied. Finally we summarize and conclude
the paper in Sect. V.

II. CASE ANALYSIS

The fourth paragraph in the introductory section of the
challenge description already suggests that the domain has
some common concepts that can be refined in lower levels
of a hierarchy for different, more specific domains: “domain-
specific concepts may be defined in their dedicated branches
of a hierarchy of models without polluting the general termi-
nology of process management”. This approach aligns with
the point of view that we use in other case studies for
MultEcore (see, e.g. [7]), and we follow it for our solution.
However, levels in MultEcore are used as an organisational
tool that ensures a high level of flexibility and reusabil-
ity, regarding both model definition, model maintainability
and model transformation. Therefore, we do not necessarily
align in every single case with the claim made in the first
paragraph of the introduction to the challenge that “MLM
allows for an arbitrary number of classification levels”, since
we do not argue that the typing relation in our multilevel
hierarchy has always strict classification semantics, but the
more broad abstraction semantics. That is, MultEcore uses
levels as an organisational tool where the main rationale for
locating elements in a particular level is grouping them by
how abstract they are, and how reusable and useful they can
be in that particular level. For example, our solution could
be made more generic (outside the scope of the challenge)
by replacing certain inheritance relations in our solution by
typing, as with the AbstractRole, CombinedRole, Role and
SeniorRole elements presented later in the paper. Still, we
generally use typing relations with classification semantics,
and the typing relation still implies that a node defines which
attributes its instances can instantiate and which relations they
can have to other nodes.

Thus, we can say that we enforce the level cohesion
principle [9] as stated in the second point of Sect. 3.1 of the
challenge description, but not level segregation. However, we
are open to the possibility of introducing more sanity checks
based on multilevel constraints for a specific domain if, for
instance, we wanted to enforce strict classification. In this
challenge, we rather focus on getting complete and concise
models that can be easily used in a software engineering
process. Currently, MultEcore ensures that typing relations
cannot be circular, reversed, or inconsistent with supplemen-
tary typing. The interested reader can get more details about
typing relations in MultEcore in [10].

This early analysis, together with the examination of the
original Process case study, adapted in the challenge descrip-
tion from [11], lead us to the creation of a five-level, two-
branch hierarchy, with levels numbered from 0 (on top) to

4 (in the bottom). In our approach to MLM, the top-most
level is always occupied by a single, self-defining model
of choice. We use Ecore for this purpose, mainly due to
implementation reasons, since the MultEcore tool is designed
as plugin for EMF. However, we choose not to overload our
model presentation and description with all the details about
this model, so the hierarchies and models depicted in this
solution exclude level 0. This fixed, top-most metamodel,
together with the fact that we do not limit the number of levels
that a hierarchy can have, makes the incrementally downwards
numbering of levels a more sensible choice. It is important that
we make this remark since many other approaches to MLM,
and MDSE in general, use a numbering system that increments
upwards, with level 0 at the bottom.

Each level in our solution accounts for a different degree of
abstraction in the challenge description. In level 1, the generic
language for process specification is defined, according to the
most abstract concepts from the domain. Level 2 scopes some
of the generic concepts defined in the level above for specific
domains. At this point, the hierarchy branches into two, for
the two domains presented in the challenge, namely software
engineering and insurance companies. Level 3 refines these
concepts to adapt them to the specific processes within the
Acme software development company or the XSure insurance
corporation. Finally, in level 4, specific scenarios of pro-
cesses for these two domains are created in the corresponding
branches, yielding a total of 8 models in our application
hierarchy, with the 7 relevant ones depicted and explained in
the following. These four levels (ignoring Ecore on top) are
closely aligned with the ones proposed by the authors in the
original process case study (see Fig. 4 in [11]).

In order to support some of the requirements regarding the
adaptation of the models to different languages and technolog-
ical domains, we created supplementary hierarchies, which are
a perfect fit to such kind of “aspect orientation” techniques for
MLM. These are used to double-type the elements which need
to be adapted without polluting the process-related concepts
in the application hierarchy with them.

Regarding the completion of the case description, or the
addition of requirements that our solution needs, we have not
found the need to do so for our solution hierarchy. We do,
however, include a few elements to represent secondary con-
cepts that the challenge description does not name explicitly,
but which make our models more explicit and flexible. These
elements do not affect the general semantics of the models or
the alignment with the requirements of the challenge. Hence,
we discuss them in Sect. III as they appear in the models, and
justify their addition in the context of the related elements that
the challenge description mentions explicitly.

Finally, since the challenge description invites respondents
to suggest “further requirements that clearly demonstrate the
utility of multi-level modelling”, we would like to take this
opportunity to suggest the following for future editions:

• One could explore further. and more explicitly, how to
translate the models into software, e.g. via code genera-
tion.



Process

Acme Software
Engineering

Process

XSure
Insurance
Process

XSure
Insurance
Process

Configuration

Acme Software
Engineering

Process
Configuration

Language
 D

om
ain

Technology
D

om
ain

Application Hierarchy Language
Supplementary

Hierarchy

Technology
Supplementary

Hierarchy

Level 1
Level 2

Level 3

Insurance
Process

Software
Engineering

Process

Level 4

Fig. 1. Multilevel architecture constructed for the Process Challenge

• Loosely related to the previous point, instead of code
generation, it could be interesting to extend the require-
ments to other model-related operations, especially model
transformations and model querying. These techniques
could be demonstrated for simulation or purposes or
similar tasks.

• In our opinion, it would be beneficial if the challenge
description provided a set of valid instances of the
multilevel hierarchy of models. These could be model
elements, probably without types, that should live at the
bottommost levels of the different hierarchy branches,
and could function as a sort of benchmark to check if
a solution really has all the required concepts to specify
such instances.

III. MODEL PRESENTATION

Fig. 1 shows the overview of the multilevel architecture
we have constructed. We first detail the application hierarchy
that captures both domains described in the challenge. This
is represented within the dashed central box in the figure,
under Application Hierarchy. We describe each level in a
subsection and start from level 1 (Process).

We also describe the supplementary hierarchies (dotted
boxes under Language Supplementary Hierarchy and
Technology Supplementary Hierarchy) and the utilities
they provide to overcome some of the requirements of the
challenge. Note that supplementary hierarchies are not bound
to a specific level but they are orthogonal to the application
hierarchy. Lastly in this section we disclose constraint defini-
tions using MCMTs. As we progress in the description of the
hierarchy we will either indirectly go through the rules of the
challenge description if no clarification is needed, or explicitly
for those cases where some explanation is necessary. In both
cases we reference the specific requirement is being fulfilled

from the description ((PX) for for those applying to general
processes and the insurance scope and (SX) for the software
engineering domain). We only display the cardinalities on
references in those cases where it is not the default one (0..*).

A. Level 1 - Process

The first level contains the concepts concerning universal
processes (see Fig. 2) and corresponds to the Process element
in Fig. 1. This includes process types, task types, artifact types,
and actors. The type of a node is indicated as a blue ellipse,
e.g. EClass is the type of Process. The type of an arrow
is written near the arrow in italic font type, e.g. EReference.
The annotations in the rectangles at the top of the nodes, and
after the names in the arrows (separated by ‘@’) specify the
potencies. In the case of MultEcore, a potency specification
includes three values: the first two specify the first and the
last levels where one can directly instantiate an element (min
and max), and the third value, the number of times the element
can be indirectly re-instantiated (depth). For attributes we drop
the third value since they can only be instantiated once (i.e.
depth is always 1). We also want to point out that we do not
use the postfix type in the model.

The composition relation contains (with cardinality 1..*)
between Process and Task models that a process type is
defined by the composition of one or more task types (P1). A
Task can have an expected duration. This is reflected in the
attribute expectedDuration. We do not add any constraint
checking that the expected duration is satisfied (with respect
to begin and end dates) as this might not be respected by
particular occurrences (P8). The potency in this case is 2-2,
as this attribute is scoped for domain-specific task types (level
3). Tasks can also have a begin date and an end date. Attributes
beginDate and endDate have 3-* as potency, meaning that
they can be instantiated minimum three levels below (P12).
Requirement P9 indicates that a last attribute called isCritical
is defined to specify that certain task types (in level 3) can be
critical. The remaining of this requirement needs a constraint
to ensure the correctness of it. Constraints are explained in
Sect. III-D).

One might need to establish ordering constraints between
task types by using Gateways, which can be Sequence,
AndSplit, AndJoin, OrSplit or OrJoin (P2). This is captured
via inheritance relationships between Gateway and the five
possibilities. “A process type has one initial task type and one
or more final task types”(P3). The references initialTask (with
cardinality 1..1) and finalTask (with cardinality 1..*) relates
Process with InitTask and FinalTask, respectively. They both
inherits from Task.

Actors may have more than one actor type (P15). We
define actor types as roles. The reference hasRole (with
cardinality 0..n) between Actor and AbstractRole models
such a requirement. We use for roles the traditional object-
oriented Composite pattern [12]. We define AbstractRole as
an abstract node (italic font in the name). On one hand, normal
roles are defined as Role. SeniorRole node inherits from Role
and it is defined to fulfill the requirement P9. We come back



to this with an application in Sect. III-B2. On the other hand,
we use CombinedRole to define roles than can be composed
by simple roles (the 2..* cardinality ensures there are at least
two roles combined). Also, roles (i.e., actor types) can have
assigned task types whose instances can perform (P5). This
is covered with executes reference from AbstractRole to
Task. Each actor can both create task types and perform tasks
(P4 and P6). We model this with the references creates and
performs from Actor to Task. Nonetheless, while the creation
is concerned to tasks types (in level 3), the performance is
related to tasks (in level 4). Thus, their potencies are different,
2-*-* for creates and 3-*-* for performs.

Another key point is that specific actors can belong to
different abstraction levels. While, for instance, Ben Boss can
create a task type (in level 3), John Smith (or even Ben Boss
himself) could perform a task in level 4. As we do not support
the use of cross-level relationships we have made the decision
of being able to define Actor instances starting in level 2
(notice the 1-*-1 potency specification for Actor). We are
aware that there might exist more than one instance of an actor
among different levels of abstractions representing the same
entity. However, this can be easily controlled as they would
have the same node ID. The two references, produces and
uses, from Task to Artifact capture that tasks can both use
and produce artifacts (P7). Since we do not handle multiple

Artifact 1-1-* Actor 2-*-*

responsibleActor@2-*-*

EReference

[1..1]

Fig. 3. Level 2: Software engineering process model

typing the requirement P16 is not achieved. However, this can
be done similarly as we have done with the role composition.

B. Software engineering process domain

In this section we disclose the domain-specific aspects for
the software engineering process which corresponds to the
right hand branch of the application hierarchy (see Fig. 1).

1) Level 2 - Software engineering process: This level
concerns the refinement of concepts from general processes
that apply to any software engineering domain. It is repre-
sented in Fig. 3 and it corresponds to Software Engineering
Process in Fig. 1. For instance, the requirement S10 states that
“software engineering artifacts have a responsible actor and
a version number. This applies to requirements specification,
code, test case, test report but also any future types of
software engineering artifacts”. The introduction of this level
forces to instances in levels below to carry such information.
While SEArtifact must be instantiated in the level below
(for instance, Acme artifacts such as CodeArtifact will have

EClass 1-*-*

EClass 1-2-*

EClass 1-*-1 EClass 1-2-*

EClass 1-2-* EClass 1-2-*

EClass 1-2-* EClass1-2-*

EClass 1-2-* EClass 1-2-*

EClass 1-2-*

EClass 1-2-* EClass 1-2-*

EClass 1-2-*EClass 1-2-*

EClass 1-2-*

contains@1-*-*

EReference

hasRole@1-*-*

EReference

executes@1-2-*

EReference
performs@3-*-*

EReference

creates@2-*-*

EReference

uses@1-2-*

EReference

produces@1-2-*

EReference

source@1-2-*

EReference

target@1-2-*

EReference

initialTask@1-2-* EReference

finalTask@1-2-*

EReference

includes@1-2-*

EReference

[1..1]

[1..*]

[1..*]

[2..*]

Fig. 2. Level 1: Process model



1-1-*InitTask@2

1-1-*Sequence@2

1-1-*Task@2

1-1-*Role@2

1-1-*SEArtifact

seq1_s@1-1-* source@2

seq1_t@1-1-* target@2

analyst_perf@1-1-*

executes@2

produces@1-1-*

produces@2

Fig. 4. Level 3: Fragment 1 of Acme software engineering process model

SEArtifact as type, in level 3), the relationship capturing
that any software engineering artifact must have associated
a responsible actor (cardinality 1..1 in responsibleActor
reference) must be defined at least two levels below (in level
4, where one can define concrete Acme software engineering
artifacts). Similarly, versionNumber attribute must be also
instantiated two levels below. We do not provide more spec-
ification in this level, however, it can be further improved to
add features that apply to every process within the software
engineering domain.

2) Level 3 - Acme software development process: We now
discuss the aspects related to the Acme software engineering
process. This model corresponds to the Acme Software
Engineering Process component in Fig. 1. First, we examine
aspects directly related to Fig. 1 of the challenge description.
We have highlighted these elements with bold text.

In this level, it is specified the types that belong to the Acme
software engineering domain. We define them as elements
which type is Task@2 in level 1 (@2 indicates that Task is
defined two levels above). For instance, we show in Fig. 4 that
RequirementsAnalysisTask node represents Requirements
Analysis not as a specific task but as a type. Since the
model is quite big, we show excerpts of it to go through the
different points. The complete model is located in Appendix A
(Fig. 15).

DesignTask, TestCaseDesignTask, CodingTask, TestDe-
signReviewTask and TestingTask (displayed in Fig. 15) are
represented in a similar way. An initial task and a final task
are also reflected in InitialTask (which type is InitialTask@2,
in the top side of Fig. 4) and FinalTask, respectively.

In the Acme diagram (Fig. 1 in [2]) one can see that tasks
are connected by different gateways. We show in Fig. 4 Seq1
which is of type Sequence with InitialTask as source@2
(this reference is named seq1_s) and RequirementsAnaly-

1-1-*Task@2

1-1-*Role@2 1-1-*SEArtifact1-1-*SeniorRole@2

CombinedRole@2 1-1-*

produces@1-1-*

produces@2

i_td@1-1-*

i_sa@1-1-*

includes@2

ct_perf@1-1-*

executes@2

includes@2

Fig. 5. Level 3: Fragment 2 of Acme software engineering process model

sisTask as target (named seq1_t). The rest of the gateways
given in the challenge are shown in Fig. 15. E.g., AndSplit1 is
an AndSplit gateway that splits RequirementsAnalysisTask
(source@2) into DesignTask and TestCaseDesignTask via
split1_t1 and split1_t2, respectively. Similarly, AndJoin1
joins CodingTask and TestDesignReviewTask into Testing-
Task.

Now we discuss some of the rules specified in Sect. 2.3 of
the challenge document that apply to this level of abstraction.
“A requirements analysis is performed by an analyst and
produces a requirements specification” (S1). This is shown
on the left side of Fig. 4 where the AnalystRole can perform
RequirementsAnalysisTask (via analyst_perf reference of
type executes@2) which produces ReqSpecificationArti-
fact (via produces with type produces@2).

“A test case design is performed by a developer or test
designer and produces test cases” (S2). This requirement is
strictly related to S13. It states that “designing test cases
is a critical task which must be performed by a senior
analyst. Here we make use of the composite pattern speci-
fied for roles in Fig. 2”. This is shown in Fig. 5 where a
CombinedRole@2 named ChiefTesterRole is composed by
TestDesignerRole of type Role@2 and SeniorAnalystRole
of type SeniorRole@2. Note that isCritical is set as true
in TestCaseDesignTask, and only a ChiefTesterRole is
allowed to perform (ct_perf) it. This analogously applies to
ChiefDeveloperRole (which is a combination of Develop-
erRole and SeniorDeveloper). Due to similarities we do not
make the construction for developer role. To complete S2,
TestCaseDesignTask produces TestCaseArtifact.

“An occurrence of coding is performed by a developer and
produces code” (S3). Fig 6 shows a fragment of the model
where this property is reflected. DeveloperRole is connected
via dev_perf to CodingTask which uses ProgLangArtifact.
“Instances of coding must furthermore reference one or more
programming languages employed” (S3). This is constrained
structurally in the model. Note in Fig 6 that the cardinality
of the reference uses between CodingTask and ProgLan-
gArtifact is 1..*. One must always create an instance of
ProgLangArtifact connected to an instance of CodingTask
in case of the latter is generated.



1-1-*Task@21-1-*SEArtifact 1-1-*SEArtifact

uses@1-1-*

uses@2

produces@1-1-*

produces@2

[1..*]

Fig. 6. Level 3: Fragment 3 of Acme software engineering process model

ProgLangArtifact 1-1-*

CodingTask 1-1-*

CodeArtifact 1-1-*

DeveloperRole 1-1-* 1-1-*Actor@3

1-1-*Actor@3

AnalystRole 1-1-* TesterRole 1-1-*

written@1-1-*

uses

produces@1-1-*

produces

is@1-1-*

hasRole@3

writes@1-1-* performs@3

is_analyst@1-1-*

hasRole@3

is_tester@1-1-*

hasRole@3

Fig. 7. Level 4: Acme software engineering process configuration model

Notice in the bottom left part of Fig. 15 (Appendix A) the
attribute expectedDuration has been instantiated to 9 for
TestingTask (S12). To demonstrate “Bob Brown has created
all task types in this software engineering process” (S11) we
provide two examples in the bottom right corner of Fig. 15,
where BobBrown creates FinalTask and TestDesignReview-
Task. We do not show the rest of references to the other tasks
as they would be rather similar to the ones just mentioned.

3) Level 4 - Acme software engineering process config-
uration: In this section we describe the aspects related to
a specific application of the concepts defined to the Acme
software development process. This is shown in the model
depicted in Fig. 7 and it corresponds to the Acme Software
Engineering Process Configuration element in Fig. 1.

Observe in Fig. 7 that Coding uses COBOL as artifact and
produces COBOLCode (S5 and S6). As specified in S10, all
software engineering artifacts must have a version number.
Notice that in both COBOL and COBOLCode the attribute
versionNumber is instantiated.

At the top of Fig. 7, AnnSmith, who is a Developer,
performs (via writes reference) Coding which has Coding-
Task as type (S7). At the bottom of Fig. 7 we show how

an actor BobBrown may have multiple roles, Analyst and
Tester in this case (S11). This is one example of the situation
described at the end of Sect. III-A. BobBrown has been
defined in level 3, to model that he has created all task type
of software engineering artifacts, but also that BobBrown has
the aforementioned roles.

C. Insurance process domain

The challenge description [2] provides an optional incorpo-
ration for the insurance domain which we have also modelled
to demonstrate flexibility of MultEcore. We have constructed
the models (level 2, 3 and 4) from the examples provided in
Sect. 2.2 of [2].

1) Level 2 - Insurance process: This level is not explicitly
extracted from the challenge document. However, and simi-
larly as with the software engineering branch, we define this
level to capture elements that might affect to any insurance
company. It is represented in Fig. 8 and it corresponds to

Artifact 1-1-* Actor 2-*-*

supervisorActor@2-*-*

EReference

[1..1]

Fig. 8. Level 2: Insurance process model

Insurance Process in 1. For instance, we have establish that
insurance artifacts (IArtifact node) must have a supervisor
(supervisorActor reference). IActor are insurance actors that
can supervise insurance artifacts, and must have a supervi-
sor ID (supID attribute). Note that this relationship must
be conformed two levels below, where one can talk about
specific artifacts. Therefore, IActor must be instantiated, at
least, in level 4 (potency 2-*-*), and so the supervisorActor
(potency 2-*-*) reference and supID (potency 2-2). We show
an application of such an abstraction in Sect. III-C3.

2) Level 3 - XSure insurance process: The insurance ele-
ments that are mentioned in the challenge document are pro-
vided as fragments (in comparison with the software engineer-
ing domain where it is presented as a sequence model). Thus,
in this subsection, we go through the elements concerning level
3 as they appear in the PX requisites. The model in such a
level corresponds to XSure Insurance Process element in 1.
One can find the complete model in B (Fig. 16).

A claim handling process is defined by the composition of
receive claim, assess claim, text and authorize payment task
types (P1). We do not define specific gateway type for this
domain as it has been already shown in III-B2. The same
applies to initial/final tasks.

“Ben Boss creates the task type assess claim” (P4). This is
depicted at the top of Fig. 9 where BenBoss creates Ass-
esClaimTask. “Only claim handling manager or a financial
officer can authorize payments” (P5). Such a requirement is
illustrated at the bottom of Fig. 9, AuthorizePaymentTask is
executed either by FinancialOfficerRole or ClaimHandling-
ManagerRole. We also capture that “Assess claim uses a
claim and produces a claim payment decision” (P7).



The capability of using inheritance in both models and
MCMTs (which we use to specify constraints), we can define
that if a Manager is allowed to perform, for instance, a review
claim, then a Senior Manager is also allowed P18 to do
so. One can see in Fig. 10 that ReviewClaimTask can be
performed (executes reference) by either ManagerRole or
SeniorManagerRole (as it inherits from ManagerRole). We
come back to this requirement in the next subsection where
we show specific examples of the insurance domain (level 3).

3) Level 4 - XSure insurance process configuration: Some
of the suggestions for the insurance domain belong to a
concrete configuration of the XSure company. This level
corresponds to XSure Insurance Progress Configuration
element in Fig. 1.

“We might have that John Smith and Paul Alter are the only
actors that can asses claims (P6)”. In Fig. 11 we show how
this is structurally specified. Besides, this requires a constraint
that checks whether each instance of AssessClaimTask is
performed by either JohnSmith or PaulAlter. We detail con-
straints in Sect. III-D. “Assessing Claim 123 has a begin date
01-Jan-19 and end date 02-Jan-19” (P12). This is captured in
the instantiated attributes of AssessingClaim123 node.

We also show that an actor, for example, “John Smith may
have more than one actor type (role in our domain), e.g., senior
manager and project leader” (P15). As commented at the end
of Sect. III-C2, if a manager is allowed to perform certain
tasks, so it is a senior manager. This is reflected Fig. 11 where
JohnSmith has the role SeniorManager (of type SeniorMan-

1-1-*Task@2

1-1-*Task@2

1-1-*Task@2

1-1-*Role@2

1-1-*Role@2

1-1-*Task@2

1-1-*Actor@2

1-1-*Process@2

1-1-*IArtifact

1-1-*IArtifact

executes@1-1-*

executes@2

executes@1-1-*

executes@2

creates@1-1-* creates@2

c_rc@1-1-*

contains@2

c_ac@1-1-*

contains@2

c_pp@1-1-*

contains@2

c_ap@1-1-*

contains@2

uses@1-1-* uses@2

produces@1-1-*

produces@2

Fig. 9. Level 3: Fragment 1 of the XSure insurance process model

1-1-*SeniorRole@2 1-1-*Role@2

1-1-*Role@2 1-1-*Task@2

executes@1-1-*

executes@2

Fig. 10. Level 3: Fragment 1 of the XSure insurance process model

1-1-*Actor@3 1-1-*Actor@3

AssessClaimTask 1-1-*

SeniorManagerRole 1-1-* ProjectLeaderRole 1-1-*

ReviewClaimTask 1-1-*

IActor@2 1-1-*

ClaimPaymentDecisionArtifact 1-1-*

isSM@1-1-*

hasRole@3

isPL@1-1-*

hasRole@3

performs@1-1-*

performs@3

performs@1-1-*

performs@3

produces@1-1-*

produces

supervises@1-1-*

supervisorActor@2

Fig. 11. Level 4: XSure insurance process configuration model

agerRole) performs the ReviewingClaim123 which type is
ReviewClaimTask. Notice that we have these types defined in
level 3 (Fig. 10), and that SeniorManagerRole should be able
to perform tasks of type ReviewClaimTask. Again, we need
a constraint to make sure that first, an actor with the correct
role can perform the task, and second, that elements inheriting
from the super class can also perform the operations.

On the right side of Fig. 11 we display an application of the
concepts defined in the level 2 (commented in Sect. III-C1). An
insurance actor JackMiller (with supID = 0004)supervises
an artifact named ClaimPayment.

4) Supplementary hierarchies: In this subsection we dis-
cuss how we make use of one of the key features that charac-
terizes MultEcore. This is motivated by the requirement P19:
“Artifacts, actors and all types (including process, task, artifact
and actor types) are given a set of alternative names (e.g.,
to cope with internationalization requirements or variation in
terminology)”.

Supplementary hierarchies can be added/removed without
changing the context or creating inconsistencies in the applica-
tion one. As hinted in Fig. 1, we have created two supplemen-
tary hierarchies that can provide different naming dimensions
to the elements along the application hierarchy. For instance,
we define one supplementary hierarchy for languages and
one for technologies name spaces. Initially, the supplementary
hierarchies defined contains, each of them, one model, and one
node. It is worth to remind that elements from supplementary
hierarchies can be used in an orthogonal manner. This means
that one can use such elements and instantiate their attributes
in any level of our application hierarchy. From this point, we

EClass 1-1-*

Fig. 12. LanguageNames Supplementary typing



use the language hierarchy as example for the explanation.
Fig. 12 displays the LanguageNames node which contains
two attributes, englishName for English and spanishName
for Spanish. These attributes can be instantiated in any node
that includes LanguageNames as supplementary type. An
example is shown in Fig. 13 where ReviewClaim123 includes
LanguageNames (green ellipse at the right side of the
class) as supplementary type and instantiates the attributes
coming from the supplementary dimension (englishName
= Reviewing claim 123 and spanishName = Revisar
Reclamacion 123). The advantages of using this approach
is that further languages can be added and used. Furthermore,

ReviewClaimTask 1-1-*

LanguageNames

Fig. 13. ReviewClaim123 node

we can have several supplementary hierarchies, for instance,
one could include the technology supplementary hierarchy and
add new features without harming previous work. This permits
to have several attributes altogether within the same node (e.g.,
ReviewingClaim123), belonging to different dimensions.

D. Cross-level constraints

Multilevel Coupled Model Transformations (MCMTs) have
already been proposed for the definition of behaviour de-
scriptions (i.e., dynamic semantics) [13]. In previous work
we have proven that this sort of semantics can be executed
by using Maude to evolve models with the infrastructure we
have built in [8]. However, the specification and execution of
static semantics, i.e., constraints to check some structural and
semantic correctness is part of our current work.

Transformation rules can be used to represent actions that
may happen in the system. Conventional in-place model trans-
formations (MTs) are rule-based modifications of a source
model (specified in the left-hand side of the rule) resulting
in a new state of such a model (determined by the right-
hand side). The left-hand side takes as input (a part of) a
model and it can be understood as the pattern we want to find
in our original model. The right-hand side (RHS) describes
the desired behaviour we want to acquire in our model and
thereby the next state of the system. There is a match when
what we specify in the left-hand side (LHS) is found in our
source model and the execution of the rule represents a single
transition in the state space.

These transformations work fine when we want to find a
match, and then produce a new state of the model. Still,
this mechanism does not completely align with the one we
require to define constraints. One of the possibilities to define
constraints we are currently investigating is to be able to find
a correspondence in the models through a two-step technique.
Instead of having a model that evolves or change to a new
state as it is done for specifying the behaviour (LHS → RHS),
now, for the model to pass or to be correct with respect to the

Actor Task

Role

performs

hasRole executes

R
Role

T
Task

a
Actor

t
T

r
R

performs

p
hasRole

hr

T
Task

R
Rolee

executes

a
Actor

t
T

r
R

performs

p
hasRole

hr

META

FROM TO

Fig. 14. Constraint satisfying requirement P17

constraint, both situations (what is being specified in the LHS
and the RHS) must be found in the multilevel hierarchy. The
fact that the two conditions do not match (or only one of them)
results in a constraint violation.

Let us analyse, for instance, the requirement P17: “An actor
that performs a task must be authorized for that task. Typically,
a class of actors is automatically authorized for certain classes
of tasks.” Fig. 14 shows a MCMT to satisfy such a constraint.
The META block allows us to locate types in any level of the
hierarchy that can be used in FROM and TO blocks (separated
by a black horizontal line). The FROM and TO blocks are
in this case composed by two different level of abstraction
(separated by red horizontal lines). It is worth to mention that
the three levels specified in this rule are not required to be
consecutive. Consequently, the level in the META block in this
constraint matches the level 1 of the application hierarchy (the
process level) and the two levels appearing in the FROM and
TO blocks match levels 3 and 4, respectively. The match is
valid for both insurance and software engineering domains.

With respect to the application of MCMTs to define be-
haviour, we do not want to find a match and then change
the model (FROM → TO), but to detect if both subsets
of the hierarchy are found (first check that FROM matched,
then check that TO matched as well). If so, the constraint is
satisfied, otherwise it is not. We see these rules as potential
artifacts to be used for performing model repair.

At the META level, we mirror part of process metamodel,
defining elements like Actor, Task and performs that are used
directly as types in the levels below in the rule. These elements
are defined as constants, meaning that the name of the pattern
element must match an element with the same name in the
typing chain. On the other hand, we allow the type on the
variables to be transitive (i.e., indirect typing). A first correct
match of the rule comes when an element, coupled together
with its type, fits an instance of Actor (a) that has a relation
of type performs to an instance of R (r) that must be at the
same time an instance of Role.

Translated to the rule, if an actor (a) with a certain role
(r) performs (p) a task (t) (FROM match), then, the type of



that role R must be allowed to perform (e of type executes)
such kind of tasks (T) (TO match). For instance this constraint
would ensure the requirement P5.

Even though we are already working on implementing this
functionalities in the MCMTs, this challenge has served us
to find different cases and it has provided us with new case
studies to test them.

IV. DISCUSSION

Our solution is able to properly separate the different
levels of abstraction of the domains included in the challenge,
keeping the common concepts at level 1 and then branching
their refinements for two different, more specific domains, in
levels 2, 3 and 4. This way of organising concepts from a
domain has been used several times already in MultEcore [10],
including the first edition of the bicycle challenge [14].

Any of the models at levels 1, 2 and 3 can be considered
a DSML which is used to define the level(s) below it, using
the types they define in a structurally coherent manner and
satisfying the given constraints. The models at level 4 represent
a specific state of the process, e.g. John Smith, who is a
Senior Manager, is reviewing claim 123 for the insurance
domain; or Ann Smith, who is a Developer, is using COBOL
version 1 to implement the third version of a particular
piece of code. These bottom-most models could be used for
different purposes, like logging the different tasks performed
by the actors and the generated artefacts, or for monitoring
purposes, by representing the current state of the process.
If the models were enhanced with further details, one could
even consider the execution of simulations prior to the actual
enactment of the process in the real world. In such a way,
it would be possible to asses whether the specified process,
task distribution, workload, etc. are likely to succeed or will
probably lead to time and budged overruns.

Deep characterization is a key feature when defining mul-
tilevel structures. The more abstractions levels we have, the
more necessary becomes to allow, on one hand, be precise
enough to prevent undesired behaviour and, on the other hand,
to be flexible enough, specially when defining a family of lan-
guages that might have several domain-specific variants within
the same hierarchy. we fully rely on our definition of potency
consisting of three values to tackle deep characterization. One
can see that most of the nodes and references in level 1 (in
Fig. 2) have as potency 1-2-*. This constrains the possibility of
instantiating general tasks in the level 4, which always belong
to a specific domain. With such a potency, a task must be
instantiated either in level 2 or level 3.

Another interesting example is shown in level 2. For in-
stance, in the software engineering process (Fig. 3). While
SEArtifact might only be instantiated in the level right below
(level 3), the fact that a software engineering actor (SEActor
with potency 2-*-*) is responsible (responsibleActor with
potency 2-*-*) for a specific artifact belongs, at least, to the
fourth level of abstraction. Furthermore, it does not make sense
that a software engineering artifact type (which is defined at
level 3) has a concrete version number. Thus, versionNumber

attribute potency is restricting that it can only be instantiated
two levels below (2-2 potency). Note that we relax SEActor
and responsibleActor potencies, but not in versionNumber.
In case of a fifth level was further introduced, one could
instantiate the former two but not the latter. This configuration
does not affect the current distribution of the hierarchy and we
show both possibilities (relaxed vs restricted potency) with a
merely illustrative purpose.

Regarding integrity mechanisms, we do not yet include co-
evolution mechanisms in MultEcore. This limitation is purely
instrumental, but it implies that we cannot yet deal with the
co-evolution of models and their instances. If the user changes
or deletes an element in the top models, the instances of such
types will become invalid and they will eventually be deleted
by the tool, unless their types are updated. MultEcore does
feature basic syntactic checks to ensure that the types, potency
values and relations among nodes are valid. The formalisation
behind our framework, based on Graph Theory and Category
Theory, can be found in [15] and [10].

The last interesting matter of discussion is the instantiation
of the Actor element. Due to requirements P4, P6, P13,
specific actors needed to be instantiated in two different levels.
In level 3, in order to specify who created a particular task, due
to requirement P4. And in level 4, so that we can related a task
to the specific actor who is performing it, due to requirements
P6 and P13. Our solution for that, due to the lack of cross-
level relations in MultEcore, is allowing for the instantiation
of actors in both levels. This may cause that, in some cases,
an actor who creates tasks but also executes tasks (the same
or different ones) appears duplicated in two models in two
different levels of the same hierarchy. However, we believe that
the negative side effects of this limitation are not that critical
since it is not likely that a person is in charge of organisational
matters and, at the same time, of performing the job. Moreover,
interpreting the models (for code generation, querying of the
models, etc.) without considering the duplicated actor as two
different people is trivial, since the name of the element is used
as an id. Therefore, we simply need to use the duplicated ids
as a method to detect that they represent the same real person.

As for the comparison of our approach with other MLM
techniques, we believe that the main aspects that differentiate
MultEcore are the following.

• A framework not based in the OCA architecture, which
makes the approach independent from a fixed linguis-
tic metamodel. To the best of our knowledge, only
FMMLx [16] follows a similar paradigm to ours, that
the authors call “golden braid”.

• Three-valued potency that allows for fine-grained control
of the instantiation of nodes, relations and attributes. This
concept is able to unify consistently the kinds of potency
defined, among others, in [17] and [18].

• The specialisation construction, defined to be compatible
with typing and potency in a multilevel hierarchy.

• The concept of supplementary hierarchy to introduce
aspects in our models that are not strictly related to



the domain that is modelled in the “main” application
hierarchy (e.g. language and technological domains).

• MCMTs to exploit the multilevel capabilities of our
framework, both for model transformation and constraint
specification.

Regarding the questions that the challenge description ex-
plicitly asks respondents to address, we include them in the
following, together with our responses, as a summary of this
section.

“Does the response address the established domain as
described in Sect. 2 [in [2]] and demonstrate the use of
multi-level features?” We believe that our solution contains
all the required concepts and constructions required in the
challenge description. In most cases, these constructions do not
require workarounds or additional concepts, and we discuss
and justify our choices in the few cases where we need them.
Furthermore, our solution prominently makes use of multiple
levels, three-valued potency specification and double typing
(through supplementary hierarchies). All of these concepts are
important multilevel features that this submission showcases.

“Does it evaluate/discuss the proposed modeling solution
against the criteria presented in Sect. 3 [in [2]]?” The main
part of this section is dedicated precisely to the discussion
of those criteria, in the same order that they are enumerated
in [2], so that we can make sure that this question is properly
addressed.

“Does it discuss the merits and limitations of an MLM
technique in the context of the challenge?” The rest of this
section above is dedicated precisely to such discussion, and
we have addressed both the benefits of our approach and the
shortcomings we have found, together with suggestions on
how to overcome them.

V. CONCLUSIONS

In this paper, we have presented a solution to the Process
Challenge proposed at MULTI 2019 workshop. Our multilevel
modelling hierarchy has a total of five abstraction levels,
two branches and 8 models, including the generic domain
of process description and its refinement for the software
engineering and the insurance domains. Each level is a po-
tential candidate for the generation of software artefacts, like
domain-specific editors (graphical and/or textual) to specify
processes at any level of abstraction, or the simulation of
process execution through model transformations at the bottom
levels. Our solution is based on the MultEcore tool and follows
a conceptual framework which enables EMF with the potential
of becoming a multilevel modelling framework. This facilitates
usage of the rich ecosystem of EMF in order to, for example,
create such editors with Sirius and/or Xtext.

From a more conceptual standpoint, we believe that the
focus that our approach has on flexibility and reusability
allowed us to create an elegant, concise and correct multilevel
hierarchy for the given domain of process modelling. We
believe that this solution can be an interesting contribution
for the challenge and be used to foster fruitful discussions
within the MLM community.

REFERENCES

[1] F. Macías, A. Rutle, and V. Stolz, “Multecore: Combining the best of
fixed-level and multilevel metamodelling.” in MULTI@ MoDELS, 2016,
pp. 66–75.

[2] J. P. A. Almeida, A. Rutle, M. Wimmer, and T. Kühne, “The
MULTI Process Challenge,” MULTI @MODELS, 2019, available at
https://bit.ly/2JeDEYi.

[3] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[4] H. C. S. Department, “MultEcore Website.” [Online]. Available:
https://ict.hvl.no/multecore/

[5] ——, “MULTI Process Challenge solution.” [Online]. Available:
https://github.com/alejandrort/no.hvl.multecore.examples.process2019

[6] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale, and
B. Baudry, “Leveraging Software Product Lines Engineering in the de-
velopment of external DSLs: A systematic literature review,” Computer
Languages, Systems & Structures, vol. 46, pp. 206–235, 2016.

[7] F. Macías, U. Wolter, A. Rutle, F. Durán, and R. Rodriguez-Echeverria,
“Multilevel Coupled Model Transformations for Precise and Reusable
Definition of Model Behaviour,” Journal of Logical and Algebraic
Methods in Programming, 2019.

[8] A. Rodríguez, F. Durán, A. Rutle, and L. M. Kristensen, “Executing
Multilevel Domain-Specific Models in Maude,” Journal of Object Tech-
nology, vol. 18, no. 2, pp. 4:1–21, 2019.

[9] T. Kühne, “A story of levels,” in Proceedings of MODELS 2018
Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE,
MDETools, GEMOC, MORSE, MDE4IoT, MDEbug, MoDeVVa, ME,
MULTI, HuFaMo, AMMoRe, PAINS co-located with ACM/IEEE 21st
International Conference on Model Driven Engineering Languages and
Systems (MODELS 2018), Copenhagen, Denmark, October, 14, 2018.,
2018, pp. 673–682. [Online]. Available: http://ceur-ws.org/Vol-2245/
multi_paper_5.pdf

[10] F. Macías, “Multilevel modelling and domain-specific languages,” PhD
thesis, Western Norway University of Applied Sciences and University
of Oslo, 2019.

[11] J. D. Lara and E. Guerra, “Refactoring Multi-Level Models,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 27, no. 4, p. 17, 2018.

[12] E. Gamma, Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[13] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and C. Talcott, All about Maude a high-performance logical framework:
how to specify, program and verify systems in rewriting logic. Springer-
Verlag, 2007.

[14] F. Macías, A. Rutle, and V. Stolz, “Multilevel modelling with multecore:
A contribution to the MULTI 2017 challenge,” in Proceedings of
MULTI @ MODELS, 2017, pp. 269–273. [Online]. Available:
http://ceur-ws.org/Vol-2019/multi_9.pdf

[15] U. Wolter, F. Macías, and A. Rutle, “On the Category of Graph Chains
and Graph Chain Morphisms,” University of Bergen, Department of
Informatics, Tech. Rep. 2017-416, March 2017.

[16] U. Frank, “Multilevel modeling - toward a new paradigm of conceptual
modeling and information systems design,” Business & Information
Systems Engineering, vol. 6, no. 6, pp. 319–337, 2014.

[17] C. Atkinson and R. Gerbig, “Flexible deep modeling with Melanee,” in
Modellierung 2016, ser. LNI, S. Betz and U. Reimer, Eds., vol. 255.
Bonn: Gesellschaft für Informatik, 2016, pp. 117–122.

[18] J. de Lara and E. Guerra, “Deep meta-modelling with MetaDepth,” in
Objects, Models, Components, Patterns, ser. LNCS, vol. 6141. Springer,
Jul. 2010, pp. 1–20.

https://ict.hvl.no/multecore/
https://github.com/alejandrort/no.hvl.multecore.examples.process2019
http://ceur-ws.org/Vol-2245/multi_paper_5.pdf
http://ceur-ws.org/Vol-2245/multi_paper_5.pdf
http://ceur-ws.org/Vol-2019/multi_9.pdf


APPENDIX

A. Complete model of Acme software engineering process

1-1-*InitTask@2

1-1-*Sequence@2

1-1-*Task@2

1-1-*AndSplit@2

1-1-*Task@2 1-1-*Task@2

1-1-*Sequence@2

1-1-*Sequence@2

1-1-*Task@2 1-1-*Task@2

1-1-*AndJoin@2

1-1-*Task@2

1-1-*FinalTask@2
1-1-*Sequence@2

1-1-*Role@2

1-1-*SEArtifact

1-1-*Role@2

1-1-*Role@2

1-1-*SEArtifact

1-1-*SEArtifact
1-1-*SEArtifact

1-1-*Role@2

1-1-*SEArtifact

1-1-*SeniorRole@2

CombinedRole@2 1-1-*

Actor@2 1-1-*

seq1_s@1-1-* source@2

seq1_t@1-1-* target@2

split1_s@1-1-*

source@2

split1_t1@1-1-*
target@2

split1_t2@1-1-*

target@2

seq2_s@1-1-* source@2

seq2_t@1-1-* target@2

seq3_s@1-1-*

source@2

seq3_t@1-1-* target@2

join1_s1@1-1-*
source@2

join1_s2@1-1-*
source@2

join1_t@1-1-*

target@2

seq4_s@1-1-*

source@2

seq4_t@1-1-*

target@2

analyst_perf@1-1-*

executes@2

produces@1-1-*

produces@2

dev_perf@1-1-*

executes@2

produces@1-1-*

produces@2

uses@1-1-*

uses@2 produces@1-1-*

produces@2

tester_perf@1-1-*

executes@2

produces@1-1-*

produces@2

i_td@1-1-*

includes@2

i_sa@1-1-*

includes@2

ct_perf@1-1-*

executes@2

c_ft@1-1-*

creates@2

c_tdr@1-1-*

creates@2

Fig. 15. Level 3: Acme software engineering process model



B. Complete model of XSure insurance process

1-1-*Task@2

1-1-*Task@2

1-1-*Task@2

1-1-*Role@2

1-1-*Role@2

1-1-*Task@2

1-1-*Actor@2

1-1-*SeniorRole@2 1-1-*Role@2

1-1-*Role@2

1-1-*Process@2

1-1-*IArtifact

1-1-*IArtifact

1-1-*Task@2

executes@1-1-*

executes@2

executes@1-1-*

executes@2

creates@1-1-* creates@2

c_rc@1-1-*

contains@2

c_ac@1-1-*

contains@2

c_pp@1-1-*

contains@2

c_ap@1-1-*

contains@2

uses@1-1-* uses@2

produces@1-1-*

produces@2

executes@1-1-*

executes@2

Fig. 16. Level 3: XSure insurance process model


	Introduction
	Case analysis
	Model presentation
	Level 1 - Process
	Software engineering process domain
	Level 2 - Software engineering process
	Level 3 - Acme software development process
	Level 4 - Acme software engineering process configuration

	Insurance process domain
	Level 2 - Insurance process
	Level 3 - XSure insurance process
	Level 4 - XSure insurance process configuration
	Supplementary hierarchies

	Cross-level constraints

	Discussion
	Conclusions
	References
	Appendix
	Complete model of Acme software engineering process
	Complete model of XSure insurance process


