
Towards Domain-Specific CPN Modelling Languages

Alejandro Rodŕıguez Tena1, Fernando Maćıas1,
Lars Michael Kristensen1, and Adrian Rutle1

Department of Computing, Mathematics, and Physics
Western Norway University of Applied Sciences, Bergen

{arte,fmac,lmkr,aru}@hvl.no

Software systems engineering is a comprehensive discipline involving a multitude of activ-
ities such as requirements engineering, design and specification, implementation, testing, and
deployment. Model-driven software engineering (MDSE) [4] is one of the emergent responses
from the scientific and industrial communities to tackle the increasing complexity of software
systems. MDSE utilises abstractions for modelling different aspects – behaviour and struc-
ture – of software systems, and treats models as first-class entities in all phases of software
development. One way to increase the adoption of MDSE is to develop modelling approaches
which reflect the way software architects, developers and designers, as well as organisations,
domain experts and stakeholders handle abstraction and problem-solving. In this context,
domain-specific (meta)modelling (DSMM) [5] has been proposed as an approach to unite soft-
ware modelling and abstraction, software design and architecture, and organisational studies.
The main aim is to fill the gap between these fields and make modelling more widely applicable
than it currently is [15].

The development of distributed software systems is particularly challenging. A major reason
is that these systems possess concurrency and non-determinism which means that the execution
of such systems may proceed in many different ways. To cope with the complexity of modern
concurrent systems, it is therefore crucial to provide methods that enable debugging and testing
of central parts of the system design prior to implementation and deployment [7]. Since con-
currency, communication and synchronisation are increasingly present in our lives, it is priority
to put efforts in improving the current techniques to deal with them. One way to approach
the challenge of developing concurrent systems is to build an executable model of the system.
Constructing a model and simulating it usually leads to significant insights into the design and
operation of the system considered and often results in a simpler and more streamlined design.

Modelling of distributed systems. Coloured Petri Nets (CPNs) form a graphical language
designed to construct models of distributed systems i.e. communication protocols [6], data
networks [3], distributed algorithms [11] and embedded systems [2]. CPNs combine classical
Petri nets [10] with the functional programming language Standard ML [14]. The modelling
language is suited for discrete-event processes that include choice, iteration, and concurrent
execution. A CPN model of a system is an executable model representing the states of the
system and the events (transitions) that can cause the system to change state. The CPN
modelling language also makes it possible to organise a model into a hierarchically related set
of modules, and it has a time concept to represent the time taken to execute events.

One advantage of CPNs is that they contain few but powerful modelling constructs. This
means that the modeller has few constructs that need to be mastered in order to apply the
language. However, several recent applications of CPNs [13] have shown that it would be
beneficial to be able to develop domain-specific variants that would make it possible to support:

Modelling patterns representing commonly used approaches to capture concepts from the
problem domain.

1



Domain-Specific CPN Tena et. al

Modelling restrictions forcing the modeller to use only certain constructs in the language
when modelling concepts from the problem domain.

Subtyping of elements allowing specific interpretation of certain model elements such as
places, transitions, and arcs.

Figure 1 (left) shows an example from the embedded software domain [8] in which substitution
transitions and certain places have been subtyped as representing interfaces and events for code
generation purpose. Figure 1 (right) shows an example from the control system domain in
which modelling patterns are used to consume events (Fig 1(right,top)) and update a process
variable (Fig 1(right,bottom)) based on input received from the environment. The patterns in
turn put restrictions on the arcs and arc expressions.

Bus

In/Out
DevicexMsg

Speed In/Out

INT

~1

IO_Speed
(DOSER,SPEED(v'))

v

v'

Figure 1: Examples of domain-specific concepts in CPN models.

A Metamodel for Coloured Petri Nets. The lack of extensibility of the CPN language
and lack of adaptability provided by CPN Tools have motivated us to develop a model-driven in-
frastructure for CPN. The first step towards this has been to develop a metamodel for CPN. The
definition of this metamodel will support application of model transformations (for definition
of model semantics), domain-specific metamodelling (for creation of domain-specific versions of
CPN), and abstraction (for definition of modelling patterns and restrictions).

There exists work on metamodels for Petri Nets [1]. These metamodels have been developed
for the purpose of tool interoperability for general purpose Petri nets, and not the domain-
specific aspects that we aim to address. Figure 2 shows a first attempt to develop a metamodel
with the Eclipse Modeling Framework (EMF). The next step is to put this metamodel in a
multilevel context using MultEcore [9] to facilitate refinement of concepts from CPN to reflect
domain concepts. This metamodel captures all models that can be built using CPN [7]. In
addition to the concepts represented by the class model in the figure, we have the following
constrains in the metamodel:

• A module cannot be a submodule of itself, i.e., if we follow the associations through
substitution transitions and modules then we cannot encounter the same module twice.

• If a port is associated with a socket place, then the socket place must be connected to a
substitution transition that has the module to which the port belongs as its submodule.

• Associated port and (socket) places must have identical colour sets, and if the port place
has an initial marking it must be equal to the associated socket place.

These constrains can be expressed using the Object Constraints Language (OCL). However,
in order to obtain a more uniform metamodel, we are currently investigating how they can be
expressed directly using formal diagrammatic notations in DPF [12].

2



Domain-Specific CPN Tena et. al

Figure 2: Metamodel for Colored Petri Nets

References

[1] Petri nets markup language. http://www.pnml.org/papers.php.

[2] M. A. Adamski, A. Karatkevich, and M. Wegrzyn. Design of embedded control systems, volume
267. Springer, 2005.

[3] J. Billington and M. Diaz. Application of Petri nets to communication networks: Advances in
Petri nets. Number 1605. Springer Science & Business Media, 1999.

[4] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in Practice. Morgan
& Claypool Publishers, 2012.

[5] J. de Lara, E. Guerra, and J. Sánchez Cuadrado. Model-driven engineering with domain-specific
meta-modelling languages. Software & Systems Modeling, 14(1):429–459, 2015.

[6] J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri Nets, Advances
in Petri Nets, volume 3018 of Lecture Notes in Computer Science. Springer, 2004.

[7] K. Jensen, L. M. Kristensen, and L. Wells. Coloured petri nets and cpn tools for modelling and
validation of concurrent systems. International Journal on Software Tools for Technology Transfer,
9(3):213–254, Jun 2007.

[8] L. Kristensen and V. Veiset. Transforming cpn models into code for tinyos: A case study of the
rpl protocol. In Proc. of ICATPN’16, volume 9698 of LNCS, pages 135–154. Springer, 2016.

[9] F. Maćıas, A. Rutle, and V. Stolz. MultEcore: Combining the best of fixed-level and multilevel
metamodelling. In MULTI, volume 1722 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[10] W. Reisig. Petri nets: an introduction, volume 4. Springer Science & Business Media, 2012.

[11] W. Reisig. Elements of distributed algorithms: modeling and analysis with Petri nets. Springer
Science & Business Media, 2013.

[12] A. Rutle. Diagram Predicate Framework: A Formal Approach to MDE. PhD thesis, Department
of Informatics, University of Bergen, Norway, 2010.

[13] K. I. F. Simonsen, L. M. Kristensen, and E. Kindler. Pragmatics annotated coloured petri nets
for protocol software generation and verification. TopNoC, 11:1–27, 2016.

[14] J. D. Ullman. Elements of ML programming. Prentice-Hall, Inc., 1994.

[15] J. Whittle, J. E. Hutchinson, and M. Rouncefield. The state of practice in model-driven engineer-
ing. IEEE Software, 31(3):79–85, 2014.

3


