Software and Systems Modeling
https://doi.org/10.1007/510270-021-00947-1

THEME SECTION PAPER l‘)

Check for
updates

Simulation and analysis of MultEcore multilevel models based on
rewriting logic

Alejandro Rodriguez' @ - Francisco Duran? - Lars Michael Kristensen'

Received: 27 May 2020 / Revised: 22 October 2021 / Accepted: 23 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Multilevel modelling (MLM) approaches make it possible for designers and modellers to work with an unlimited number
of abstraction levels when specifying domain-specific modelling languages (DSMLs). In this paper, we present a functional
infrastructure that allows modellers to define the structure and the operational semantics of multilevel modelling hierarchies,
enabling simulation and analysis. Using the MultEcore tool, one can design and distribute the models that compose the
language family in a multilevel hierarchy, and specify their behaviour by means of multilevel transformation, so-called
multilevel coupled model transformations. We give a rewrite logic semantics to MultEcore’s MLM, on which we have based
our automated transformation from MultEcore to the rewriting logic language Maude. Then, we rely on Maude to execute
MultEcore models and to support analysis techniques, like reachability analysis, bounded and unbounded model checking of
invariants and LTL formulas on systems with both finite and infinite reachable state spaces using equational abstraction. We
illustrate our developed techniques on a DSML family for Petri nets.

Keywords Multilevel modelling - Domain-specific modelling languages - Model transformations - Verification - Rewriting
logic - Maude

1 Introduction This restriction is present in traditional Model-Driven

Software Engineering (MDSE) approaches which are based

Multilevel modelling (MLM) is a notable research area where
models and their specifications can be organised into several
levels of abstraction [4]. Indeed, the MLM community has
shown that MLM is a favourable approach in domains such as
process modelling and software architecture [6,8]. Although
there exist diverse approaches for MLM (see [2,17,62,65]
for some of them), they all share a common idea: lifting the
restriction on the number of levels that designers can use to
specify modelling languages.

Communicated by Adrian Rutle and Manuel Wimmer.

Supported by SFI Smart Ocean NFR Project 309612/F40.

B Alejandro Rodriguez
arte@hvl.no

Francisco Duran
duran@lcc.uma.es

Lars Michael Kristensen
Lars.Michael Kristensen @hvl.no

Western Norway Univ. of Applied Sciences, Bergen, Norway

ITIS Software, University of Mélaga, Mélaga, Spain

Published online: 23 November 2021

on the Object Management Group (OMG) [45] 4-layer archi-
tecture such as the Unified Modelling Language (UML) [64]
and the Eclipse Modelling Framework (EMF) [46,60]. Like
in traditional MDSE approaches, MLLM uses abstractions and
modelling techniques to tackle the continually increasing
complexity of software by considering models as primary
artefacts in each phase of the software engineering life-cycle
[11]. Using MLM, modellers are no longer forced to fit
their modelling language specifications within two levels of
abstraction: one for (meta)models and one for their instances.
This limitation might indeed be too restrictive for certain sit-
uations where the language is large and/or complex, and even
more when defining behavioural domain-specific modelling
languages (DSMLs). DSMLs that are, for instance, varia-
tions on general-purpose languages, i.e., to specify different
refinements aimed at specific domains, would require fur-
ther concretisations of their metamodels. Moreover, these
limitations may lead to complications like model convolu-
tion, accidental complexity, and mixing concepts belonging
to different domains (see, e.g., [6,7,19] for discussions on
these issues).

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00947-1&domain=pdf
http://orcid.org/0000-0002-9605-9546

A.Rodriguez et al.

One of the most prominent applications of MDSE is
the construction of DSMLs [46]. These are modelling lan-
guages that are tailored to a concrete application area [33]
which bridge the gap between software engineers and domain
experts. DSMLs are usually built on top of a more abstract
modelling language, which requires well-defined infrastruc-
tures to handle the separation of different abstraction levels.
Furthermore, MLM techniques are excellent for the cre-
ation of DSMLs, especially when focusing on behavioural
languages, since behaviour is usually defined at the meta-
model level, while it is executed (at least) two levels below
at the instance level [3,18,41]. The reason is that behaviour
is reflected in the running instances of the models which in
turn conform to their metamodel.

The approach for MLM proposed by the tool MultEcore
[39,57], formally specified in [38], rests on the premise that
one must be able to specify models (distributed along tree-
like hierarchies) which are both generic and precise [41].
Even though various approaches have been proposed for the
definition and simulation of behavioural models based on
reusable model transformations (e.g., [20,50,52]), these rely
on traditional two-level modelling hierarchies. Furthermore,
modelling the behaviour through multilevel model transfor-
mations [3] and performing execution and analysis in MLM
have not been widely explored yet.

Having a hierarchical organisation of the models that are
in fact separate artefacts which altogether precisely capture
the desired system facilitates future extensions and modifica-
tions. This applies not only in the existing levels, but also for
adding or removing models to the existing multilevel hier-
archy. Therefore, it can help to prevent pollution of models
where specialisation of concepts would have to be done in
the same model (even if they naturally fit in different levels
of abstraction). Furthermore, this enhances modularisation
and facilitates extensibility [58].

To cope with execution/simulation of models within the
MLM context, Multilevel Coupled Model Transformations
(MCMTs) were formally introduced in [41] as a multilevel
transformation language that bridges the gap for the execu-
tion of multilevel modelling hierarchies. MCMTs are meant
to achieve reusable multilevel model transformations for the
specification of behaviour. In this paper, we improve the
expressive capabilities of MCMTs, with respect to their pre-
sentation in [41], by extending them with basic support for
attributes, the specification of application conditions to block
their execution, and the possibility of expressing multiple
patterns through the use of nested parametric boxes.

Even though the potential of the MCMTs has been illus-
trated in several examples, its practical applicability has been
limited. Indeed, the proposal in [41] was only theoretical,
and no proper implementation was available. We show in
this paper how we have turned the MultEcore editing facili-
ties into a complete development environment in which we

@ Springer

cannot only edit our MLM models, but also experiment with
them through their simulation and execution, and analyse
them by giving access to advanced verification and model
checking tools. Having appropriate tools for the development
of DSMLs is key, but not our only goal. It is not only about
developing models, these models must be correct. Having
support for the simulation and analysis of such models is key
for the use of the MLM techniques. In this paper, we pro-
vide a formal semantics of MultEcore models and provide a
number of tools for the analysis of such models.

We provide such capabilities for simulation and analy-
sis thanks to a formal specification of MultEcore models
in rewriting logic [42,43], and specifically by providing a
model-to-model transformation into the rewriting logic lan-
guage Maude [14,15,21]. As we will see in the rest of the
paper, the syntactical facilities of Maude have allowed us
to use a representation of MLM hierarchies and MCMTs
very close to that of MultEcore. Indeed, this minimal rep-
resentation distance has facilitated the automation of the
bidirectional transformation between them. These transfor-
mations give MultEcore users access to the Maude execution
engine, which is possibly the most efficient engine for rewrit-
ing modulo (combinations of) associativity, commutativity
and identity [22,26]. In addition, it also gives access to
Maude’s formal tool environment, which includes, e.g. tools
for reachability analysis, model checking, and confluence
and termination analysis [15,23].

This work builds on several previous papers on Mul-
tEcore (see, e.g. [38-41,58,68]), but, specifically, it is an
extended version of [56]. A detailed discussion on the com-
parison with this work can be found in Sect. 6. In summary,
the main contributions of this paper are: (1) the expres-
sive power of MCMTs have been significantly improved,;
(2) a formal semantics of MultEcore’s MLLM hierarchies and
behavioural definitions is provided using rewriting logic; (3)
formal specifications of MultEcore DSMLs which can be
used for simulation and formal analysis; and (4) the Mul-
tEcore tool has been extended to give users direct access to
such facilities.

All concepts and facilities presented in this paper are
illustrated on a case study for a multilevel DSML for Petri
nets. Specifically, we show how to design, execute, and ver-
ify models. While the case study is described in this paper,
we refer the reader to [55] for the complete MultEcore and
Maude specifications, including additional details on their
analysis.

1.1 Outline

We describe in Sect. 2 the features that characterise our MLM
approach using a multilevel DSML for a Petri nets multilevel
hierarchy. We level-wise explore each model comprising the
hierarchy, from both the structural and behavioural points of

Simulation and analysis of MultEcore multilevel models based on rewriting logic

views. Section 3 provides an overview of the infrastructure
that transforms the multilevel DSML defined in MultEcore
into a Maude specification. This section provides details of
the generated Maude specification. We demonstrate the use
of such an infrastructure with a case study in Sect. 4, where
we perform execution and analysis of a Petri net model of
a gas station. In Sect. 5, we discuss related work. Finally,
Sect. 6 concludes the paper and outlines directions for future
work.

2 Multilevel modelling of Petri nets

In this section, the MultEcore tool and its modelling facili-
ties are summarised. Instead of presenting the previous state
of the tool as preliminaries, and then introducing its new
features, this section presents the current state of the tool,
emphasising on the new features. Although the new features
are explained in some more detail, the purpose of the sec-
tion is to give a complete overview of the facilities of the
language. To illustrate the different concepts and techniques
discussed in this paper, we use as case study a DSML for
Petri nets. In the next sections, we describe each of the mod-
els that constitute the Petri net multilevel hierarchy. We depict
in Appendix A (Fig. 18) the complete developed PNs multi-
level hierarchy (where we omit Ecore at the top).

2.1 The MultEcore tool

The MultEcore tool is designed as a set of Eclipse plug-
ins, giving access to its mature ecosystem (integration with
EMF) and incorporating the flexibility of MLM. In the Mul-
tEcore approach [41], the abstract syntax is provided by
MLM models and the behaviour is provided by Multilevel
Coupled Model Transformations (MCMTs) [38,41]. Using
the MultEcore tool, modellers can (i) define MLM models
using the model graphical editor; (ii) define MCMTs using
its rule editor; and (iii) execute and analyse specific models.
The execution of MultEcore models rely on a transforma-
tion of the models into Maude [15] specifications. When we
design a multilevel DSML, we first define its syntax/structure
with multilevel modelling hierarchies. Then the behaviour is
specified via our multilevel transformation language.

For implementation reasons, MultEcore prescribes the
use of Ecore [60] as root graph at level O in all example
hierarchies. Models are distributed in multilevel modelling
hierarchies. A multilevel modelling hierarchy in our con-
text is a tree-shaped hierarchy of models with a single root
typically depicted at the top of the hierarchy tree. Thus, hier-
archies enclose a set of models connected via typing relations.
Levels are indexed with increasing natural numbers starting
from the uppermost one, having index 0.

Fig.1 Simple Petri net model

2.2 Petri nets metamodel

Petri nets (PNs) is a well-established formalism to model
concurrent systems [47,48]. There is a rich body of theoreti-
cal results enabling analysis of PNs, and an enormous set of
supporting tools.

A PN is a directed bipartite graph, in which the nodes
represent transitions (i.e. events that may occur, represented
by rectangles/bars) and places (i.e. states, represented by cir-
cles). For example, Fig. 1 shows a Petri net model using a
well-known concrete syntax. In it, we find places p1...p4
and transitions tr1 and tr2, where p1 and p2 are connected
to tr1 via input arcs, p3 is connected to tr1 through an output
arc and to tr2 via an input arc, and finally p4 is an output
place of tr2.

The nodes and arcs constitute the static structure of a PN.
The dynamic behaviour of the net is given by the token game,
representing various states of the system. This token game is
based on the firing of transitions that leads to the consump-
tion/production of tokens; each fired transition produces a
new model state.

A particular state is a snapshot of the system’s behaviour.
The state of a place is called its marking, represented by the
presence or absence of tokens—commonly represented as
black dots—in the places. In the example shown in Fig. 1
there are three tokens in p1 and two tokens in p2. The cur-
rent state of the modelled system (marking) is given by the
number of tokens in each place.

The increasing complexity of systems has promoted a pro-
liferation of Petri nets variants and extensions during the last
decades, as often classical Petri nets are too basic to capture
the needs of certain domains. A brief comparison of different
kinds of Petri nets can be found in [9]. Although our hierar-
chy could include other types of PNs, here we only include
classical or regular PNs and reset/inhibitor nets [66].

We show in Fig. 2 a PN metamodel aimed to capture the
abstract concepts of Petri nets. This metamodel represents the
level 1 of the hierarchy (Fig. 18a). The purpose of this model
is merely structural. In other words, subsequent levels below
it should define the concrete semantics of the PN language(s)
(as we show in this section). Thus, as we can see in the figure,
a PN contains nodes, each of which can be either a Place or a

@ Springer

A.Rodriguez et al.

Fig.2 Conceptual Petri nets

EClass 1-*-*|—
metamodel (also shown in P
Fic. 18 (A nodes@1-*-* (s 1-2-3
ig. 18a) 1-* name : string Node
EReference N
1-* name : string
D <t
arcs@1-*-* 1 1
EReference source@1-2-3 target@1-2-3
EReference EReference
EClass
1_ -3
Transition Iace
inArcs@1-2-3
EReference
OutArcs@1-2-3_| 1-* name : string
EReference

Transition, and Arcs. Note the use of the inheritance relation
and the definition of the Node class as abstract class (note
the italics), indicating that it cannot be instantiated. As shown
in the figure, the type of a node, provided by some element
in an upper-level metamodel, is indicated in a (light blue)
ellipse at its top left side, e.g. EClass is the type of PN, Node,
Transition, Place, and Arc. The type of an arrow is written
near the arrow in italic font type, e.g. EReference for arcs,
nodes, source, target, inArcs and outArcs. Classes may have
attribute declarations, that can be typed by one of the four
basic Ecore types, namely Integer, Real, Boolean and String.
These attributes can be instantiated in a lower level with a
value, as will be illustrated in Sect. 2.5. For the manipulation
of attribute values, and the specification of rule conditions, a
subset of OCL [12,13,67] is currently supported.!

The annotations displayed as three numbers in a (red)
box at the top right of each node, and concatenated to the
name after “@” for every reference, specify their potencies.
Potency [34] is a well-known concept in MLM and it is used
on elements as a way of restricting the levels at which this ele-
ment may be used to type other elements. By using potencies
on elements, we can define the degree of flexibility/restric-
tiveness we want to allow on the elements of our multilevel
hierarchy. The first two values, start and end, specify the
range of levels below, relative to the current level, where the
element can be directly instantiated. The third value, depth,
is used to control the maximum number of times that the
element can be transitively instantiated, or re-instantiated,
regardless of the levels where this occurs.

Potency in attributes is displayed as two numbers since
attributes can be instantiated only once and it does not make
sense to create an instance of such instance. The depth on
attributes is therefore always 1 and it is not modifiable. In
practical terms, only the first two values (start and end) of
the potency are available to the user.

1 OCL was chosen since it has been part of UML for several years, is
one of the most used languages in EMF-based applications, and it is
considered a standard in the MDSE community.

@ Springer

For instance, the potency specified for Arc, Node, Transi-
tion and Place is 1-2-3, which means that an element can be
directly instantiated one and two levels below (levels 2 or 3 in
the hierarchy), and such instances can be re-instantiated up
to three additional times. This depth is therefore dependent
on the value of the type, and the depth of an element must
always be strictly less than the depth of its type.

2.3 Regular Petri nets

The regular Petri nets that we consider in this paper are not
restricted to the so-called Ordinary Petri Nets where input
and output arcs consume or produce, respectively, only a
single token [30]. We allow natural numbers (arc weights)
on arcs so that more than one token can be added/removed at
atime. Following the PNs convention, we denote this number
as the weight of the arc.

2.3.1 A metamodel for regular Petri nets

Figure 3 shows the regular-petri-nets model. It is located at
level 2 of the hierarchy (Fig. 18) where we instantiate the con-
cepts defined at level 1. Thus, in this model, we provide the
structural basis for the modeller to be able to define further
Petri net instance models. InputArc and OutputArc connect
regular places and regular transitions. A RegularPlace con-
trols how many tokens it is holding via the numTokens
attribute.> The weight of arcs is represented as attributes
weight of type int in classes InputArc and OutputArc.

2.3.2 Operational semantics of regular Petri nets

The multilevel transformation language that MCMTs define
allows us to exploit multilevel capabilities and is powerful
enough to specify behavioural descriptions in an operational

2 Note that the number of tokens may be calculated with the OCL
expression rp.tokens->size(). The attribute is however used to speed up
calculations and to illustrate the use of attributes.

Simulation and analysis of MultEcore multilevel models based on rewriting logic

source@2-2-1

Arc

| 221 |—

InputArc target@2-2-1

source

1-* weight : int

target 11

1.1
(__ Place)—‘ 1-2-2

RegularPlace

tokens@2-2-1
1-* numTokens : int

EReference

1.1

EClass —

Tolen target@2-2-1

—

Transition

TmReguIarArcs@l—Z—l RegularTransition

inArcs

outRegularArcs@1-2-1
OutArcs A

1.1

OutputArc

source@2-2-1

target

1-* weight : int

source

Fig.3 Regular Petri nets metamodel (also shown in Fig. 18b)

way. Transformation rules can be used to represent actions
that may happen in the system. A rule has the form of LHS =
RHS if C, where LHS is a multilevel model pattern (which
may contain variables), and RHS is a model pattern in which
we can use the variables already appearing in LHS. C is a
boolean condition, in which we can use variables from LHS.
Given a model M that represents a state of the system, we
say that there is a match of LHS on M if there is a submodel
M|, of M such that for some assignment o of the variables
in LHS, we have LHSo = M|,, where LHSo denotes the
application of the assignment o to LHS. Given a match of
LHS on M, for some assignment o and the submodel M|,
the condition Co is evaluated, where, similarly, Co denotes
the application of the assignment o to the condition C. If it
evaluates to true, then the application of the rule consists of
the replacement of the submodel M|, of M by RHSo, which
we denote M[RHSo |,,. In other words, if there is a match of
the rule on the model, and its condition is satisfied, then the
matched submodel is replaced by the model specified in the
right-hand side of the rule.

The way to express the behaviour of systems using trans-
formation rules is by specifying rules modelling each of the
possible actions that may occur. In PNs, actions occur when
transitions are fired. In a regular PN, we only have regular
arcs connecting places with transitions. Although transitions
can have an arbitrary number of input and output places, such
an action can be specified with the MCMT rule Fire regular
transition depicted in Fig. 4. Specifically, this rule models a
transition being fired, taking into account the information of
the input places (arcs connected to it) and the output places
(arcs where new tokens are to be produced). The FROM and
TO blocks describe the left pattern and the right pattern of
the rule, respectively. The META block shows a multilevel
pattern allowing us to locate types at any level that can be
used as individual types for the items in the FROM and TO
blocks, respectively. Notice that the META block facilitates

the definition of an entire multilevel pattern, therefore, we
can specify several levels within the block.

At the top level of Fig. 4, we mirror parts of the petri-
nets-concepts model (depicted in Fig. 2), defining elements
like Node, Arc, Transition, Place, source, target, inArcs and
outArcs as constants—constant elements have their names
underlined and their types are not specified. A constant node
inan MCMT rule is a literal value. It can only match to a node
in the hierarchy with the same name in the matched level. In
aconstant edge, it is the name, the name of the source and the
name of the target which must be the same in order to have a
match. The use of constants constrains the matching process,
significantly reducing the amount of matches. Note that vari-
ables like InArc in the lower level of the META block or tk1 in
the FROM section, may be instantiated to any element in the
MLM model. We depict in the META block those elements
and their relationships that are useful for the specification of
the FROM and TO patterns.

In the second level of the META block (below the red hor-
izontal line), we capture elements to serve as types to scope
the execution of regular PNs. In this level, we find elements
as variables. For example, Token, whose type is denoted in
the ellipse right above it (EClass). We also have RegPlace,
of type Place, and the reference rptk, of type EReference.
Similarly, we express attributes (such as numTokens) that
will later be used in the levels below. When the element is a
variable, the match is based only on finding the right struc-
ture in the model. This opens for the definition of generic
rules which are applicable to structurally similar hierarchies
in which the elements have different names.

Note that the horizontal lines do not enforce consecutive-
ness between the levels specified in the rule with respect to
the hierarchy. This leads to a more natural way of defining
that a type is defined at some level above, without explicitly
stating at which level. In fact, this also promotes flexibility
in case of future modifications of the number of branches

@ Springer

A.Rodriguez et al.

source
<€
Node | Arc
3 — target A A
l l inArcs
outArcs
Place Transition
Arc ———— inarct
5 InpArc target
ECI Place —% ; S9u.
_?_ST(otk RegPlace sou weight : int K s Transition
oken <%
I— EReferencel , \mTokens : int o - RegTrans
Ys, Arc ———— gh
SN e 4
VM OutArc W
) 3 © outarcs
META weight : int source
FROM [tr.inRegularArcs->size()] TO [tr.inRegularArcs->size()]
[ttt — el g 5=t
T an” T 777 RegPlace —— InpArc ! - InpArc !
1y Token) oy |00 1 <als 1’ al alt . E RegPlace 1 <2’ =il alt .
n tkl [tk | p inparcs inparct | ! | Y nparcs| inparct] |
1] . 1 . 1
:: [alc] numTokens=pl1nt weight=alc . ! numTokens=plnt - alc weight=alc '
fmmmm e ! ! ' !
oo K
1 [B ettt A f 1
---------------------------------- RegTrans Y. . S RegTrans =Y.
| RegPlace — OutArc — | » fReeRlace Qurare a0s
! aos wu tr ' po ao tr
X Po aot ao utarcs | aot utarcs,
E numTokens=pont ﬁJtarctWeight:aoc . E pumfokens=pont + aoq Gutarct|elght=aoc E
: [tr.outRegularArcs->size()] E ! R |
""""""""""""""""" ! '[tr.outRegularArcs->size()]
I |
. - 1 1
Conditions ' :

tr.inArcs->size() = tr.inRegularArcs->size()
tr.outArcs->size() = tr.outRegularArcs->size()

Fig.4 Rule Fire regular transition: It removes tokens in the input places and creates new ones in the output places

(horizontal dimension) and the depth (vertical dimension) of
hierarchies. For instance, the three levels depicted in the rule
in Fig. 4 would match to levels 1, 2 and 4 in the multilevel
hierarchy depicted in Fig. 18. As the aim of the PNs multi-
level hierarchy used as an example here is not to highlight the
horizontal/vertical flexibility, we refer the interested reader
to [56, Section 4.2] for details on this.

We specify in the FROM block what elements must be
found in the model in order to be able to fire a transition. As
one can observe, dashed boxes are specified around certain
parts of the FROM model. A key point when defining model
transformation rules is to make them as reusable as possi-
ble. Furthermore, in a PN, there might not only be as many
input/output places connected to a transition as one requires,
but also an arbitrary number of tokens residing within each
of these places. Clearly, it is not practical to define one rule
per possible combination of these connections, as the num-
ber of rules would rapidly blow up. MCMTs allow the use of
nesting boxes to define patterns where its unfolding would

@ Springer

resultin a collection of elements. As seen in the rule in Fig. 4,
boxes may appear in both sides, and they can be nested.

The blue dashed box in the FROM section of the rule in
Fig. 4 encapsulates the nodes tk1, p1 and al, as well as
the references p1tk, als and alt, covering all the potential
input places connected to the transition (matched to tr) in the
model. The number of instances of this pattern submodel is
given by the OCL expression tr.inRegularArcs— size(), also
in blue, which represents the number of incoming arcs, i.e.
the size of the collection of incoming regular arcs of the
transition tr.

In OCL, the size() operator calculates the size of the collec-
tion it is applied on. The tr.inRegularArcs expression returns
the collection of edges whose source is tr and its type is
inRegularArcs. Note, however, that the way in which types
are used in MLM is a bit different than for standard OCL. This
allows transitive typing, which as we will see below, may be
very useful. If instead, as in the condition of the rule, we use
tr.inArcs, then we get the collection of edges of type inArcs or

Simulation and analysis of MultEcore multilevel models based on rewriting logic

any of its instances. Note that the expression tr.inArcs— size()
= tr.inRegularArcs— size() checks whether all the incoming
arcs of a given transition tr are of type inRegularArcs. This
means that the rule is only applicable on transitions whose
arcs are all regular. The number of total input (resp. output)
arcs, inArcs (resp. outArcs), must be equal to the number of
input (resp. output) regular arcs, inRegularArcs (resp. out-
RegularArcs).

Analogously, and using the OCL expression
tr.outRegularArcs— size(), a second (red) dashed box allows
us to specify a number of output places (and corresponding
arcs) connected to the transition.

Note the (green) nested box in the FROM part, inside the
(blue) box. This inner box allows us to take an arbitrary num-
ber of tokens from the input place. For a specific instantiation
of the rule, the cardinality of the box is matched to the vari-
able alc that takes the value of the weight attribute of arc
al. Indeed, given these boxes, a transition may have multi-
ple incoming arcs, and for each incoming place-arc, multiple
tokens.

There are also boxes on the TO part. Notice that the input
and output arcs are left unmodified, but the appropriate num-
ber of tokens are added to the corresponding output places.
The number of tokens to put in an output place is provided
by the weight attribute of the outcoming arc. The nested
(green) box in the TO part, inside the (red) box, indicates
that the number of tokens (tko) to be added to each output
place po connected to tr via ao, is given by the value aoc
of the weight of the arc ao. Finally, note the use of OCL
expressions for the manipulation of attributes. In this case,
the numTokens attributes of places p1 and po are corre-
spondingly updated: each input place p1 from which some
tokens are removed and each output place po that receives
tokens, gets its numTokens attribute, respectively, decreased
(numTokens =p1nt-alc) orincreased (numTokens = pont
+ aoc) with the corresponding number of tokens.

In summary, the rule can be executed if the unfolded num-
ber of elements is found during the matching process, and all
the conditions are satisfied. If this is fulfilled, the model in
the TO part is produced. In this case, the execution of the rule
removes all the tokens present in each of the input places as
specified in the boxes, and creates new tokens on the output
places.

2.4 Reset/inhibitor Petri nets

A reset/inhibitor PN [66] is a PN that in addition to regular
arcs may also have reset and inhibitor arcs. A reset arc is
an input arc that connects a place to a transition and which
removes all the tokens of the place when the transition is
fired. This is useful as a “cleaning mechanism” in models
that capture, e.g. certain environments where messages might
be retransmitted and buffers could accumulate old messages.

Fig.5 Concrete syntax of a reset/inhibitor Petri net example

An inhibitor arc is an input arc which is used to reverse the
logic of an input place. With an inhibitor arc, the absence
of a token in the input place is what enables the connected
transition (not its presence). For instance, inhibitor arcs can
be used to delay certain actions until a system is idle, or to
wait until the end of a loop.

Figure 5 shows a very simple example of a reset/inhibitor
PN in which we have one arc of each type. In this example,
p1 is connected to tr1 via a regular input arc (defined in
Fig. 3), p2 via areset arc (denoted with double arrow heads)
and p3 via an inhibitor arc (distinguished with a small circle
instead of an arrow head). Thus, this transition could be fired
according to the semantics of each of the arcs: since (i) p1
has 3 tokens and its regular input arc requires 2; (ii) p2 does
not block the firing of the transition, but it will be emptied by
its connected reset arc; and (iii) p3 has 0 tokens which fulfils
the enabling semantics of the inhibitor arc.

2.4.1 A metamodel for reset/inhibitor Petri nets

Figure 6 shows the model reset-inhibitor-petri-nets, placed
at level 3 of the hierarchy (see Fig. 18c). The model captures
rules extended with the reset arcs and inhibitor arcs.

As in the model at level 2, the refined Transition in Fig. 6
keeps track of the inhibitor and reset arcs connected to it
(through references inlnhibitorArcs and inResetArcs, respec-
tively). While ExtendedPlace and ExtendedTransition are
typed by elements in the level right above, ResetArc and
InhibitorArc nodes are typed directly by Arc, which is located
two levels above (as denoted by the @2 after the type).

In our approach, we follow the so-called abstraction
semantics to organise elements within the multilevel hierar-
chy based on how abstract they are. Thus, for us, organising
elements in different models is a feature that primarily
enhances modularisation and promotes separation of con-
cerns [6]. In other words, we do not encourage the level
segregation principle [35], which establishes that level organ-
isational semantics should be unique, i.e. aligned to one
particular organisational scheme, such as classification or
generalisation. Nonetheless, we do encourage the level cohe-
sion principle [35], that is, we recommend to organise
elements that are semantically close (by means of potency
and level organisation).

@ Springer

A.Rodriguez et al.

Fig.6 Reset/inhibitor Petri nets
metamodel (also shown in
Fig. 18¢c)

source@1-1-1

Arc@2 1-1-1]

ResetArc

target@1-1-1

Reg/u[arPlace 1-1-1 L1

ExtendedPlace

1.1

source@2

source@1-1-1

target@2

RegularTransition

?inResetArcs@l—l-l
inArcs@2

ExtendedTransition

inInhibitorArcs@1-1-1

inArcs@2
Carcoz 3

InhibitorArc

1.1
target@1-1-1

source@2

2.4.2 Behaviour for reset/inhibitor Petri nets

Reset/inhibitor Petri nets have additional semantics that have
to be properly managed. The MCMT rule Fire reset/inhibitor
transition is depicted in Fig. 7. This rule should be compared
with the Fire regular transition rule shown in Fig. 4. The
rule Fire reset/inhibitor transition handles the case in which
a transition has any number of arcs of any of the three types
(regular, reset or inhibitor). In particular, if there are only
regular arcs, it behaves as the Fire regular transition rule.
Observe that the rule in Fig. 7 includes a third META level,
where we capture variable elements such as ExtPlace (of
type RegPlace), InhArc (representing inhibitor arcs), ResArc
(denoting reset arcs) and ExtTrans. As in the levels above, we
determine inResetArcs and inInhibitorArcs references with
ExtTrans as source, which can be later used in the OCL
expressions for the boxes/conditions.

In the FROM block, we need to specify that we might find
any number instances of each of the three kinds of arcs. We
do it by encapsulating patterns for each of the arc types into
a separate box. Corresponding boxes in the right-hand side
specify the corresponding action to take on such an arc and
its corresponding place. Notice that boxes for regular and
reset arcs have corresponding nested boxes specifying the
appropriate number of instances. These boxes are described
as follows:

Regular arcs The boxes handling regular arcs are exactly
as those depicted in the Fire regular transition rule,
where the box in the FROM block with cardinality
trinRegularArcs—size() captures each regular arc al
connecting a place p1 to the transition tr, and removes the
number of tokens of each place as given by the weight
alc on the arc. The corresponding number of tokens is
then put in the corresponding output places in the TO
block.

Reset arcs The box in the FROM block with cardinal-
ity tr.inResetArcs— size() captures the reset arcs a2 that
connect input places p2 to the transition tr. To remove

@ Springer

target@2

all the tokens tk2 present in the connected place p2, the
number of tokens in the place is used as cardinality of
the inner box. Note that these tokens do not appear in
the corresponding box in the TO block. In this way, all of
them are removed.

Inhibitor arcs A third box with cardinality
trininhibitorArcs— size() captures inhibitor arcs. Since
for the transition to be enabled the number of tokens of
each place connected via an inhibitor arc must be 0, we
simply specify this directly in p3, where it is stated that
the attribute numTokens has value zero.

The rest of the rule is similar to what we have already seen.

The condition tr.inArcs — size() = tr.inRegularArcs —
size() + trinResetArcs — size() + tr.inInhibitorArcs —
size() checks that the total number of input arcs is the
sum of the number of regular input arcs, the reset arcs
and the inhibitor arcs. The condition tr.outArcs—size() =
tr.outRegularArcs— size() checks that the total number of
output arcs is the number of regular output arcs. These con-
ditions would be key for further extensions of the current PN
hierarchy. If the FROM block of the rule matches a submodel
of the PN and the conditions are satisfied, the application of
the rule results in the removal of the corresponding tokens
from the places connected either via regular or reset arcs, and
the creation of new tokens in the output places. Notice that
the attributes on the places that keep track of the number of
tokens get updated.

2.5 Examples of PN models

With the hierarchy described in Sects. 2.2-2.4, we can now
define models of regular PNs and models of reset/inhibitor
PNs. This is possible, as potency specifications allow us to
design the hierarchy in a way where deep instantiation [5]
can be achieved, being able to instantiate elements residing
in any level above.

To illustrate how PN are represented using the given hier-
archy, we show a first example using a concrete syntax for

Simulation and analysis of MultEcore multilevel models based on rewriting logic

source
Node : Arc
3 — target A A
I— l inArcs
outArcs
Place Transition
Arc ———— inparct
S InpArc target
EClass Place "“pau(rcc"' i =9y
0 8 of 7 "
Token |€ X RegPlace ° EGES I % Transition
EReferencel .\ mTokens : int . .| RegTrans
Y%, Arc —— (X
S5, W2 A
% OutArc W
N N outarcs
weight : int source
Arc ———— inharct
R (CS inInhip;: target
RegPlace —K‘Qﬁﬁrce Linlfiatie ,;,'Z’:COSFArcs RegTrans_i
ExtPlace . ExtTrans
SSarcg Arc ———— inResetArcs
META SUrce ResArc resarct
source
IER_O_M ________________ [tr.inRegularArcs->size()]. TO [tr.inRegularArcs->size()]
" Token ExtPlace InpArc | ExtPlace — T T T ImpArc — T TTTA
H Token |y | 1 _a1s P al ait E " ExtPlace ; P a16INPATC att :
ol tkl rptk | p ihparcs inparct | X p Ihparcs| al inparct !
[[2 1 !
I [alc]fnumTokens=p1nt weight=alc | i [numTokens=p1nt - a1c weight=alc !
L L 1 1
| o e o e o e e e e e e e e e e e e e e mm 1 b e o !
ettt 'Y, o T~ T TTTTTTTToTTmmm o T mm e | ExtTi Y
! "~ _'I_'o_k;e; “““ ':ExtPIace ResArc - | T | ExtPlace ResArc — ! S
0’ | _p2tk ! p2 2s 2 a2ty I p2 a2s a2 azt
v thk2 € arcd 94 |resarct) ' resarcs resarct |
: : [2nt] [numTokens=p2nt : : numTokens=0 [tr.inResetArcs->size()] :
I P i [tr.inResetArcs->size()] | tr e tr
VL L L L o o e | = T T T T T T T e e e e e s s s s s == ===
el e R | ' ExtPlace a3s InhArc — 3t |
ExtPI nhArc — | i | a |
1 Sl .<—|a35 a3t o, ‘| p3 Cinharcs a3 [ohardt
! p3 inharcs a3 inharct R ! [tr.inInhibitorA oo ‘(,),], .
| — . - | .
' numTokens=0 [[tr.inInhibitorArcs->size()], I N trininhibitorares-2s1izell], VT aos 1
o | L 1 1 t
L oooIiiiioiiiiiiioiiioooo__ | aos | R i T ExtPlace OutArc —228rcs:
' [tr.outRegularArcs->size()] outarcs) '\ “Token [aoc] po ao !
| ExtPlace utArc bl K potk | g 20t !
! aot ao o : tko “€rptk |numTokens=pont+aod 5t ez e Weight=aoc | |
1 >l ! 1 | 1
. ! numTokens=pont[oy tarct]weight=aoc L tr.outRegularArcs->size 1
Conditions '---------==========-----=========-" |.________.____. [________ g_ ______________(?:_I_'

tr.inArcs->siz

tr.outArcs->si

e()

ize()

tr.inRegularArcs->size() + tr.inResetArcs->size() + tr.inInhibitorArcs->size()
tr.outRegularArcs->size()

Fig.7 Rule Fire reset/inhibitor transition: modelling the firing of transitions with regular, reset and inhibitor arcs

Petri nets and then its corresponding one using the MultEcore
(abstract) syntax. Figure 8 shows a simple example using reg-
ular PNs where four places (two input and two output) and
one transition are depicted. To the left we can see that p1
and p2 carry three and two tokens, respectively. Firing tr1
transition would remove 2 tokens from p1 and 1 from p2,
and would create 3 and 2 tokens in p3 and p4, respectively,
as expressed by the weight in the arcs.

The MultEcore representation of the PN in Fig. 8 is shown
in Fig. 9. Since we consider this model at the instance level,
we use potency 0-0-0 in the elements. This is used to enforce
that elements at the bottom level (in this case level 4) are
used purely as instances, which cannot be refined further at
levels below it.

As a second example, the MultEcore representation of the
PN depicted in Fig. 5 is depicted in Fig. 18d.

@ Springer

A.Rodriguez et al.

Fig.8 Concrete syntax of a regular Petri net example

3 Formal semantics of multilevel DSMLs

Rewriting logic is used for giving a formal semantics to Mul-
tEcore, and specifically, a transformation between MultEcore
DSML definitions and Maude specifications provides such a
semantics to MultEcore. The Maude representation is there-
fore key to understand such semantics, and to understand the
way MultEcore’s DSMLs are executed and analysed. The
goal of this section is to introduce Maude and the relationship
between MultEcore and Maude, and then the rewriting logic
semantics of MultEcore is explained. Specifically, Sect. 3.1
introduces Maude and the use of Maude by the MultEcore
tool; Sect. 3.2 presents our Maude semantics of Multilevel
hierarchies; and, given its complexity, the formalization of
MCMTs is split in Sects. 3.3 and 3.4.

3.1 Maude as a backend tool for MultEcore

Maude [14,15,21] is a specification language based on rewrit-
ing logic [42], a logic of change that can naturally deal
with states and non-deterministic concurrent computations.
A rewrite logic theory is a tuple (X;E;R), where (X;E) is
an equational theory that specifies the system states as ele-
ments of the initial algebra Ti.E), and R is a set of rewrite
rules that describe the one-step possible concurrent transi-

tkl

Corena2>[00:9

tk2

als@0-0-0

tk2@0-0-0[numTokens=3

source@2 |
alt@0-0-0

tions in the system. X is a signature that specifies the type
structure (e.g., sorts and subsorts) and operations, and E is
the collection of equations and memberships declared in the
functional module. Rewrite specifications thus described are
executable, if they satisfy restrictions such as termination and
confluence of the equational subspecification, and coherence
of equations and rules. Maude provides support for rewriting
modulo associativity, commutativity and identity, which per-
fectly captures the evolution of models made up of objects
linked by references as in graph grammars.

Although having a formal semantics may be relevant on its
own, as we will see in this and the coming sections, a formal
semantics of MultEcore’s MLM hierarchies and MCMTs is
what enables execution of MultEcore models using Maude,
and also to carry out different types of analysis on them.
The transformation of MultEcore models into Maude speci-
fications, and the execution and analysis results back into the
MultEcore tool, is precisely what allows us to provide access
to such facilities to MultEcore users. The uses of Maude by
the MultEcore tool can be summarised as follows:

Formal specification The Maude specification of multi-
level hierarchies and MCMTs represents a formal seman-
tics of MultEcore models in rewriting logic. Based on
such formalisation, the transformation MultEcore <—
Maude has been automated.

Execution of the specification The Maude specification
obtained from MultEcore models using the above trans-
formation is executable, and therefore, it can be used
to simulate MultEcore models in Maude. The versatile
rewriting engine is not only efficient, but also provides
functionalities to customise the way we go through the
execution steps. We can simulate our systems by letting

AR " @

numTokens=0

a3s@0-0-0 a3

al

target@2 source@2
e Y000
trl a3out@0-0-0 I

weight=3

outReqularArcs@2

a4out@0-0-0

outReqularArcs@2

ad
| a4s@0-0-0 | weight=2

source@2

RegularPlace@2
[24t@0-0-0 T - jo-00

tokens@2 weight=2
tk3 .
1k3@0-0-0 alin@0-0-0
tokens@2 inRegularArcs@2
a2in@0-0-0
tka tokens@2 -0-
RegularPlace@2 M weight=1 3210000
p2 target@2
numTokens=2 225@0-0-0 I
source@2

k5 1k5@0-0-0

Token@2 m |

tokens@2

Fig.9 MultEcore syntax of a regular Petri net example

@ Springer

target@2 numTokens=0

Simulation and analysis of MultEcore multilevel models based on rewriting logic

Maude choose the path to follow, or we can specify a
concrete path specifying it step by step, or by means of
execution strategies.

Formal environment Once the rewriting logic specifi-
cation of a MultEcore model is available, we can use the
tools in Maude’s formal environment to analyse it. For
example, we can check properties such as confluence and
termination of our specifications, and can also perform
reachability analysis, model checking and theorem prov-

ing.

The overall MultEcore-Maude infrastructure is outlined in
Fig. 10. The left-hand side shows the MultEcore part, where
we specify multilevel DSMLs by providing a Multilevel Hier-
archy and a set of MCMT rules. The Transformer MultEcore
<—> Maude has been developed as a bidirectional trans-
formation that takes MultEcore textual specifications and
automatically generates Maude specifications, and then takes
the XML output files that Maude produces as result of per-
forming execution and analysis, and automatically translates
them into MultEcore models graphically displayed.

To grasp an intuition of how the transformation works,
each MultEcore object (including both a hierarchy and its
MCMTs) is mapped into a corresponding Maude object.
References and conditions are handled in exactly the same
way, by using references as names, and using the same set
of expressions (types and operators) for conditions. The
rewriting modulo associativity, commutativity and identity
available in Maude captures quite naturally the intended oper-
ational semantics of MCMTs. The major challenges were the
handling of boxing and the rewriting on multilevel hierar-
chies. The support for OCL is based on the Maude semantics
of OCL proposed in [59].

The right-hand side of Fig. 10 shows the Maude process
perspective. The transformer produces a functional module
with the equational theory used to represent MLM hierar-
chies, the MLM Hierarchy, and a system module with rewrite
theory that represents the MCMT Rules. The representation
of MM hierarchies and MCMTs is presented in Sects. 3.2—
3.4, respectively. We illustrate later (in Sect. 4.1) some of the
possibilities for execution and analysis of the models on a
case study.

As we will see in this section, MultEcore encapsulates the
interaction with the Maude tools, which are hidden to the
user. The Maude specification is, however, available to the
user, who can interact directly with the Maude environment
to get full access to all its features. The complete MultEcore
description (both the hierarchy and the MCMTs), the corre-
sponding full Maude specification and the experiments and
properties verified can be found in [55].

3.2 A Maude semantics of multilevel hierarchies

In Maude, object-oriented systems can be specified by
object-oriented modules in which classes and subclasses are
declared, with the usual support for inheritance, and dynamic
binding. A class is declared with syntax class C | a;: Si,...,
a,: S,, where C is the name of the class, a; are attribute identi-
fiers, and S; are the sorts of the corresponding attributes. The
objects of a class C are record-like structures of the form <
O:C|ay: vy, ..., ay: v, >, where O is the identifier of the
object, and v; are the current values of its attributes.

To represent multilevel metamodels we have introduced
declarations to represent multilevel hierarchies as collections
of objects each of which represents one of the level models.
Specifically, in our approach, a multilevel hierarchy is repre-
sented as a structure of sort System of the form
{ model; model, ... model, }
where each model; is an object of class Model that represents
a model in the hierarchy.

Figure 11 shows an excerpt of the Maude specification
obtained from the MultEcore Petri net multilevel hierar-
chy. We have used ellipses (...) to omit some parts due to
space limitations. Since levels are numbered starting from 0
(Ecore), the object representing level i’s model uses level(i)
as identifier. Such an object uses attributes to share the
name of the model (name), the name of its immediate meta-
model (om), its collection of nodes (elts), and a collection
of the relations between these nodes (rels). Elements and
relations are themselves represented as objects, of classes
Node and Relation, respectively. Each node has attributes
to store its name (name), type (type) and its own attributes
(attributes). These attributes are again represented as objects
with attributes to keep, depending on the level, its name or
value (nameOrValue) and its type (type). A relation object
has attributes to store its source (source), target (target), and
multiplicities, provided by the two usual values (min-mult
and max-mult). To avoid name clashes between levels, object
identifiers are represented using the operator oid, and nodes
and relations using the operator id. Both operators take the
level number in which they are defined as first argument, and
either a unique number or a string with its actual name.

For instance, the object in lines 1-6 represents level 0,
the Ecore model, which has one node with name and type
id(0, “EClass”) (line 4) and one relation EReference (lines
5-6). Note that the source and target of this relation refer
to the names of the source and target nodes, respectively,
which in this case is the same id(0, “EClass”). The petri-nets-
concepts model in lines 7-14 represents the model in Fig. 2
(also Fig. 18a). Lines 10—12 show the representation of node
Node, of type EClass, which has several attributes, among
which we can see its attribute with name name of type String.

@ Springer

A.Rodriguez et al.

Fig. 10 Infrastructure for the

Maude process
execution and analysis of level 1 Mu ItECO re o
multilevel modelling hierarchies petri-nets-concepts MLM Structure
L)
- : 5| @ (Functional module)
6 evel 2
(‘G regular-petri-nets A A
o ! : :
< Ievél 3 . I
e _— _ Transformer MLM MCMT
& reset—|nhlbltz:r—petrl—nets Hierarchy Rules
= 1 (Functional module)||(System module)
; level 4 - instance g MultEcore
gas-station-petri-net ¢ ¢
Safety/Liveness
System
META-1 . analysis
Fire execution N
(reachability
) regular | rrom TO (rewrite engine)
%’ transition analysis)
: CONDITIONS Gulded
= META:T simulation LTL property
g Fire BTS2)) e L
extended (rewrite engine verification
transition| FROM TO controlled by (model checking)
Irr— strategies)
1 { < level(0) : Model |
2 name : "Ecore",
3 om : "Ecore",
4 elts : (< 0id(0, 1) : Node | name : id(0, "EClass"), type : id(0, "EClass"), attributes : none >),
5 rels : (< 0id(0, 2) : Relation | name : id(0, "EReference"), type : id(0, "EReference")),
6 source : id(0, "EClass"), target : id(0, "EClass"), ... > >
7 < level(1) : Model |
8 name : "petri-nets-concepts",
9 om : "Ecore",
10 elts : (< oid(1, 1) : Node | name : id(1, "Node"), type : id(0, "EClass"),
11 attributes : (< o0id(1, 2) : Attri | nameOrValue : id(1, "name"),
12 type : id(1, "String") >)>)>
13 L),
14 rels : (...) >
15 .
16 < level(4) : Model |
17 name : '"reset-inhibitor-petri-net-example",
18 om : "reset-inhibitor-petri-nets",
19 elts : (...
20 < 0id(4, 12) : Node | name : id(4, "p1"), type : id(3, "ExtendedPlace"),
21 attributes : (< oid(4, 13) : Attri | nameOrValue : 3, type : id(2, "numTokens") >) >
22
23 < 0id(4, 28) : Node | name : id(4, "tk1"), type : id(2, "Token"), attributes : none >
24),
25 rels : (...
26 < o0id(4, 36) : Relation | name : id(4, "tk1"), type : id(2, "tokens"),
27 source : id(4, "pi"), target : id(4, "tk1"), ...>
28 o) >}
Fig. 11 Excerpt of the Petri net multilevel hierarchy in Maude representation

The instance model at level 4 is shown in lines 16-28. Note behaviour. Rewrite rules are written as
that among its nodes, there is one with name id(4, “p1”) (in
lines 20-21), of type id(3, “ExtendedPlace”)—a node in its
metamodel—which has an attribute of type id(2, “numTo-

kens”) with value 3.

cl[11:T=>T'ifC

where [is the rule’s label, T and T’ are terms, and C is its
guard or condition. As MultEcore’s MCMTs, Maude rules
describe the local, concurrent transitions that are possible in

3.3 Box-free MCMTs in Maude

In Maude, object-oriented systems are axiomatised by equa-
tional theories describing their states as algebraic data types
and collections of conditional rewrite rules specifying their

@ Springer

the system, i.e., when a part of the system state fits the pattern
T, then it can be replaced by the corresponding instantiation
of T’. Also as for MCMTs, the guard C acts as a blocking pre-

Simulation and analysis of MultEcore multilevel models based on rewriting logic

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

19
20
21

22
23
24
25
26

27
28

29

56
57
58
59
60
61
62

Attri29), Atts29 >

Atts33 >

crl [Fire-1-to-1-Regular-Arcs]
{ < level(L1) : Model | name : M,
elts : (< 001 : Node | name : id(L1, "Arc"), type : id(0, "EClass"), AttsO1 >
< 002 : Node | name : id(L1, "Node"), type : id(0, "EClass"), Atts02 >
< 003 : Node | name : id(L1, "Transition"), type : id(0, "EClass"), Atts03 >
< 004 : Node | name : id(L1, "Place"), type : id(0, "EClass"), Atts04 >
Elts),
rels : (
< 005 : Relation | name : id(L1, "inArcs"), type : id(0, "EReference"), source : id(L1l, "Transition"), Atts05 >
< 006 : Relation | name : id(L1, "outArcs"), type : id(0, "EReference"), source : id(L1, "Transition"), Atts06 >
< 007 : Relation | name : id(L1, "source"), type : id(0, "EReference"), source : id(L1, "Arc"), Atts07 >
< 008 : Relation | name : id(L1, "target"), type : id(0, "EReference"), source : id(L1, "Arc"), Atts08 >
Rels),
Atts >
< level(L2) : Model | LD
< level(L3) : Model | name : M’’7,
elts : (< 026 : Node | name : tr_1, type : id(L2, "Transition"), Atts26 >
< 027 : Node | name : ao_1, type : id(L2, "OutputArc"),
attributes : (< 028 : Attri | nameOrValue : , type : id(L2, "weight"), Atts28 > Attri27), Atts27 >
< 029 : Node | name : po_1, type : id(L2, "Place"),
attributes : (< 030 : Attri | nameOrValue : , type : id(L2, "numTokens"), Atts30 > Attri29), Atts29 >
< 031 : Node | name : tki_1, type : id(L2, "Token"), Atts31 >‘
< 032 : Node | name : al_1, type : id(L2, "InputArc"),
attributes : (< 033 : Attri | nameOrValue : , type : id(L2, "weight"), Atts33 > Attri32), Atts32 >
< 034 : Node | name : pl_1, type : id(L2, "Place"),
attributes : (< 035 : Attri | nameOrValue : , type : id(L2, "numTokens"), Atts35 > Attri34), Atts34 >
Elts’’’),
rels : (< 036 : Relation | name : alt_1, type : id(L2, "target"), source : al_1, target : tr_1, Atts36 >
< 037 : Relation | name : pitk_1, type : id(L2, "tokens"), source : pl_1, target : tkl_1, Atts37 >
< 038 : Relation | name : als_1, type : id(L2, "source"), source : al_1, target : pl_1, Atts38 >
< 039 : Relation | name : aos_1, type : id(L2, "source"), source : ao_1l, target : tr_1, Atts39 >
< 040 : Relation | name : aot_1, type : id(L2, "target"), source : ao_1, target : po_1, Atts40 >
Rels’’’),
Atts’’? >
< counter : Counter | value : >
Conf }
=> { < level(L1) : Model | . > ---- as in the left-hand side
< level(L2) : Model | . > —---- as in the left-hand side
< level(L3) : Model | name : M’’7,
elts : (< 026 : Node | name : tr_1, type : id(L2, "Transition"), Atts26 >
< 027 : Node | name : ao_1, type : id(L2, "OutputArc"),
attributes : (< 028 : Attri | nameOrValue : , type : id(L2, "weight"), Atts28 > Attri27), Atts27 >
< 029 : Node | name : po_1, type : id(L2, "Place"),
attributes : (< 030 : Attri | nameOrValue : , type : id(L2, "numTokens"), Atts30 >
< 031 : Node | name : al_1, type : IA_1,
attributes : (< 032 : Attri | nameOrValue : , type : id(L2, "weight"), Atts32 > Attri31), Atts31 >
< 033 : Node | name : p1_1, type : id(L2, "Place"),
attributes : (< 034 : Attri | nameOrValue : , type : id(L2, "numTokens"), Atts34 > Attri33),
< 0id(L3, N) : Node | name : id(L3, N + 1), type : id(L2, "Token"), attributes : none >
Elts’’?),
rels : (< 036 : Relation | name : alt_1, type : id(L2, "target"), source : al_1, target : tr_1, Atts36 >
< 038 : Relation | name : als_1, type : id(L2, "source"), source : al_1, target : pl_1, Atts48 >
< 039 : Relation | name : aos_1, type : id(L2, "source"), source : ao_1, target : tr_1, Atts39 >
< 040 : Relation | name : aot_1, type : id(L2, "target"), source : ao_1, target : po_1, Atts40 >
< 0id(L3, N + 2) : Relation | name : id(L3, N + 3), type : id(L2, "tokens"),
‘source : po_1, target : id(L3, N + 1), min-mult : 1, max-mult : 1 >
Rels’’’),
Atts’?? >

< counter : Counter | value :

Conf }
if L1 < L2 /\ L2 < L3
/\ tr . inArcs -> size()

=tr .

e

inRegularArcs -> size() /\ tr . outArcs -> size()

= tr . outRegularArcs -> size()

Fig. 12 Excerpt of the Maude rewrite rule corresponding to the box-free version of the Fire regular transition MCMT rule

@ Springer

A.Rodriguez et al.

condition: a conditional rule can only be fired if its condition
is satisfied. Rules may be given without label or condition.

Given the representation of multilevel hierarchies pre-
sented in the previous section, the transformation of MCMT
rules without boxes is straightforward. Basically, since the
META section does not change, its corresponding represen-
tation appears in both left- and right-hand sides. The left-hand
side of the rule is completed with the representation of the
FROM block, and the representation of the TO block is added
to its right-hand side. Variables in MCMTs are represented as
Maude variables, and conditions are placed in the conditions
as such. Since we restrict conditions to basic types, basic
operators and certain selected OCL operations, the expres-
sions can be handled directly by Maude. The last issue to
consider is new names and identifiers in right-hand sides. As
we explained above, identifiers are represented using the id
and oid operators, which take the level in which the object
is created and a unique number as arguments. Such numbers
are generated using a Counter object whose value attribute
gets increased every time a new identifier is created.

Let us illustrate this general procedure on a specific exam-
ple. Consider the rule Fire regular transition depicted in
Fig. 4, but let us assume first that it has no boxes in it, that is,
let us assume that it takes one single token from the unique
input place of a transition and moves it to its unique out-
put place. If this was the case, the corresponding generated
Maude rule would be the one shown in Fig. 12. Again, we
have used ellipses to shorten the listing.

The left- and right-hand sides of the rule are given in
lines 1634 and 39-58, respectively. The corresponding con-
dition is in lines 61-62. The META section is represented
in lines 2—-15 and 37-38. The three objects representing the
META section are replicated in both sides. They provide the
appropriate context for the rule, but it is in the FROM and TO
sections where the actual change is modelled. Notice the use
of variables to identify the levels (L1, L2 and L3). These are
used to match any specific levels in the hierarchy on which the
rule is applied. They do not need to be consecutive levels, the
only restriction is given in the condition, where it is checked
that LT < L2 < L3 (line 61). Notice that the Maude rule rep-
resents quite closely the corresponding MultEcore MCMT.
For instance, constants in the MCMT rules are mapped into
Maude constants and ground terms. Variables are used both
to represent free elements in the rules and also any other ele-
ments not explicitly specified. The condition of the MCMT
rule is written as such in line 62. Finally, notice the use of the
Counter object, which in the left-hand side has some value
N (line 35) and in the right-hand side has value N + 4 (line
59) since four new identifiers are introduced.

The model changes applied by the Fire regular transition
rule have been highlighted by framing them to ease its com-
prehension (see the rectangles in Fig. 12). Specifically, given
a transition tr_1 (line 17) with only one place (notice the

@ Springer

weight 1 of the input arc in lines 23-24), and given one of
the tokens in it (the token is specified in line 22 and the rela-
tion associating it to the place in line 29), the rule removes
such a token and creates a new one (lines 49 and 55-56). The
number of tokens in the input place is decremented (lines
26 and 48) and the number of tokens in the output place
is incremented (lines 21 and 44). Finally, the created token
and relation objects (lines 49 and 55-56) have identifiers
oid(L3,N), oid(L3,N+1), oid(L3,N+2), and oid(L3,N+3).

3.4 Meta-programming for MCMTs boxes

As illustrated with the rules depicted in Figs. 4 and 7, boxes
allow us to express very general situations in a quite intu-
itive way. However, Maude does not provide any mechanism
similar to that of MCMT boxes, and therefore the transfor-
mation is not as simple. To handle boxes in a generic and
efficient way, we use Maude’s meta-programming capabili-
ties to unfold boxes at runtime as needed.

If we revisit the Fire regular transition rule in Fig. 4, this
time considering its boxes, we know that each time the rule
is applied, depending on the specific situation, there will be
a number of replicas of each of the boxes. Actually, notice
that we may have multiple boxes on both sides, with different
cardinalities, and we can have nested boxes, as many times
as needed. Note also that these cardinalities are explicitly
specified, otherwise, for example, a given transition could
be applied taking an arbitrary number of tokens from sev-
eral of the available input places. These cardinalities could
be provided as OCL expressions, which need to be evalu-
ated to get the corresponding value at the time it is required.
In this particular case, the transition has tr.inRegularArcs-
>size() input regular arcs, each of which has a weight alc
which specifies the number of tokens to be removed from
it when the transition is fired. Similarly, the transition has
tr.outRegularArcs->size() regular output arcs, which pro-
vides the number of output places, each of which has a weight
that indicates the number of tokens to be created on that place.

The only assumption that we make to handle boxes is that
their cardinality must be greater than zero. In case we want
to consider the possibility of zero replications of a box, we
need to provide the corresponding rule without such a box.
This is the case for the rule in Fig. 7. The cases in which
we have transitions with no reset, inhibitor or regular arcs
must be handled in different Maude rules. Although these
cases can be handled by automatically creating the zero-case
corresponding rule, we focus here on the general case.

An MCMT rule with boxes produces two Maude rules
(plus the corresponding ones for the zero-cardinality cases).
Excerpts of the two rules for the MCMT rule Fire regular
transition in Fig. 4 are shown in Figs. 13 and 14. The first
one of the rules has a left-hand side as if there were no boxes
init. That is, the left-hand side of the rule in Fig. 13 is exactly

Simulation and analysis of MultEcore multilevel models based on rewriting logic

as the left-hand side of the rule in Fig. 12. In its condition,
the boxes are expanded in a copy of the rule in accordance
with the actual match and its application is attempted (lines
15-24 in Fig. 13). If such an application succeeds, the result
is given as result of the application of the rule, that is, it is
used to replace the current system (line 7). If the application
in the condition fails, the rule fails. To understand this rule,
we need to introduce some additional Maude machinery and
some auxiliary functions.

First, in addition to equality checks, Maude rule conditions
may include so-called matching equations using the operator
:=. Given a pattern term P (a canonical term possibly with
free variables) and a term T which may use variables in the
left-hand side of the rule and also variables introduced in
previous matching conditions, the condition expression P :=
T evaluates the term T and tries to match its result to the
pattern P. If P is a variable, it works like a /et or where clause
to assign that value to the variable so that it can later be used.
If a more general pattern is used, the match may result in the
simultaneous assignment of values to multiple variables. In
the rule in Fig. 13, we can see how matching conditions are
used several times. First, it is used to refer to the left-hand
side of the rules as { Conf' } (in lines 9-13), then to refer to
the match of the rule as Subst, and finally to get the result of
the application of the unfolded rule (line 15).

In Maude, terms and modules have a metarepresentation
that we can manipulate as regular terms. Up and down func-
tions allow us to move terms and modules between levels.
For instance, given the module GENERIC-PN in which these
rules are defined, the expression upModule('GENERIC-PN,
false) gives us its metarepresentation. Similarly, upTerm({
Conf'}) gives us the metarepresentation of the term { Conf’
}, and downTerm(T, { none }) moves down the result of
the application of the unfolded rule T. The built-in function
metaApply(M,T,L,S,N) returns the Nth solution of applying
rule L in module M on term T using the substitution S to
constraint the application of the rule. Then, assuming that
the makeModule function takes the module with the rules
and expands the boxes of the indicated rule as required, the
call to metaApply in the last matching condition in the rule
in Fig. 13 will apply the expanded rule on the current state
of the system using the original substitution, that is, forcing
the same match. The metaApply function gives a triple {T,
Ty, Subst} as result, where T is the term resulting from the
application of the rule, Ty its type, and Subst is the complete
substitution used in the application.

The FireRegularArcsBoxes rule is shown in Fig. 14. It is
similar to the rule without boxes explained in Sect. 3.3, but
now it also includes information on the boxes in the FROM
(lines 5-6) and TO (lines 13—14) parts. The boxes represen-
tation of the FROM part includes references to objects in
the level(L3) Model object in the LHS, whist the boxes rep-

resentation of the TO part has references to objects in the
corresponding model object in the RHS.

Boxes are specified as a collection of terms of the form
box[C]{OS}, with C being the cardinality of the box and OS
the set of identifiers of the objects (nodes and relations) and
nested boxes within the box. The makeModule function is
a metalevel function that operates on the metarepresented
module, expanding the indicated rule by unfolding the boxes
init. It proceeds recursively, removing one box level at a time.
As we have seen above, the cardinality of a box specifies the
number of replicas of that box that we need to generate. After
abox is expanded, the cardinalities of the next-level boxes can
be evaluated. The operation is repeated until no further boxes
are left. Once all boxes in a rule are completely expanded,
the application of the rule is attempted in one single step.

Notice that boxes in right-hand sides may, and in fact do
in the FireRegularArcsBoxes rule in Fig. 14, contain iden-
tifiers of new objects. Notice also that the counter object is
updated according to the number of objects being created,
either inside or outside boxes.

4 Execution and analysis of a Petri net model

The capability to execute MultEcore systems and use the
powerful tools that Maude implements for reachability and
model checking of the multilevel models takes our infras-
tructure to a next step. Furthermore, modelling behavioural
languages, such as Petri nets, becomes interesting if one can
transfer simulation and analysis onto the concrete system
models. This section shows how to execute and analize such
models. In particular, we demonstrate these capabilities on a
case study, namely, a gas station model adapted from [31]. We
consider the complete modelling cycle, where the modeller
sketches and designs the multilevel hierarchy that represents
the system, then specifies the behaviour by means of transfor-
mation rules, and then automatically transforms its setting to
Maude where simulation and execution can be done to verify
and analyse the system.

The concrete syntax of the model is depicted in Fig. 15.
This model would be located at level 4 of the PN hierarchy, as
an instance of the reset-inhibitor-petri-nets model (Figs. 6,
18c). The PN model represents a system in which car tanks
get filled up at a gas station. The station has a tank with
a maximum capacity, which can be evacuated for cleaning
operations and then replenished. If there is no car in the sta-
tion, a new car can arrive and set its indicator on. Once the
car’s tank is filled, it leaves the station.

The initial marking of the model, depicted in Fig. 15, has
4 tokens in the place Station Tank, which is its full capacity.
For a car tank to be refuelled, there must be a token in the
Fuel Indicator On place. This can only happen if the tran-
sition Turn Fuel Indicator On has been fired, and for this

@ Springer

A.Rodriguez et al.

Q
2]

-~

[FireRegularA
< level(Ll)
< level(L2)
< level(L3)
< counter : C

: Model
: Model
: Model

rcs] :

vV V. V Vv

ounter

---- left-hand side as for the rule without boxes

Conf }
=> downTerm(T, { none })

© OO0 Uk WN =

inArcs -> size() = tr . inRegularArcs -> size())

if (tr . outArcs -> size() = tr . outRegularArcs -> size()) /\ (tr .
/\ Conf’ := < level(L1) : Model | . >

10 < level(L2) : Model | ... >

11 < level(L3) : Model | ... >

12 < counter : Counter | . >

13 Conf

14 /\ Subst := (...) ---- match of the rule

15 /\ { T, Ty, Subst’ } := metaApply(

16 makeModule (

17 upModule (’GENERIC-PN, false),

18 upTerm({ Conf’ }),

19 ’FireRegularArcsBoxes,

20 Subst),

21 upTerm({ Conf’ }),

22 ’FireRegularArcsBoxes,

23 Subst,

24 0) .

Fig. 13 Excerpt of the first of the Maude rewrite rule corresponding to the Fire regular transition MCMT rule

rl [FireRegularArcsBoxes] :

{ < level(L1) : Model | ... >
< level(L2) : Model | ... >
< level(L3) : Model | ... >

1
2
3
4
5
6
7
8
9
10
11
12
13 boxes ((box[tr .
14 box[tr .
15 < counter : Counter | value :

N + 13 > Conf } .

boxes((tr . outRegularArcs -> size()]{ 027, 029, 039, 040 1},
box[tr .
< counter : Counter | value : N >
Conf }
=>

{ < level(L1) : Model | ... >
< level(L2) : Model | ... >
< level(L3) : Model | ... >

---- as the left-hand side of the rule without boxes

---- box information

inRegularArcs -> size()]{ 032, 034, 036, 038, box[alc]{ 022, 029 } }))

---- as the right-hand side of the rule without boxes

outRegularArcs -> size()]{ 027, 029, 039, 040, box[aoc]{ 0id(L3, N), o0id(L3, N + 2)} },
inRegularArcs -> size()]{ 032, 034, 036, 038 }))

Fig. 14 Excerpt of the second of the Maude rewrite rule corresponding to the Fire regular transition MCMT rule

to happen, there cannot be any token either in the Car Tank
place (the tank is empty) or in the Fuel Indicator On place (the
indicator is off). This is modelled by the two inhibitor arcs
connected to the Turn Fuel Indicator On transition. Then,
once the indicator has been turned on, we can only progress
by firing Fuel Car transition, which makes the Car Tank filled
(i.e., gets one token). Ultimately, once the car tank is full, the
Leave Station transition can be fired, leading the car to exit
the station by putting a token into the Outside Station place.

4.1 Execution using Maude

Given a model with an initial marking, we can simulate it. In
fact, we have two ways of doing so. We can let the default
strategy choose the rules to apply, and the way in which
to apply them, or we can force a specific sequence of rule
applications.

Rule rewriting is a highly non-deterministic process, and
in general, at every step many rules may be applicable
(enabled). Moreover, since a rewrite system may be non-
terminating, as is the case of the gas station example, a

@ Springer

maximum number of rewriting steps to be taken may be spec-
ified.

A finer control on rule application may sometimes be
desirable. In MultEcore, we may specify the sequence of
rules to be applied, which can be selected from a list of
possible ones. As we states in Sect. 3.4, for any rule with
boxes, several Maude rules are generated, corresponding to
the different combinations of boxes with cardinality zero.
Thus, for the Fire reset/inhibitor transition rule in Fig. 7,
seven rules are generated, e.g., for transitions with no reg-
ular arcs (FireResetInhibitorArcs), for transitions with no
inhibitor and no reset arcs (FireRegularArcs), for transitions
with no reset and no regular arcs (FirelnhibitorArcs). Then,
we can specify the strategy with which we desire to rewrite
our initial marking model by indicating the corresponding
sequence of rule labels. For example, we can guide the exe-
cution from an initial marking given the following sequence:

FireInhibitorArcs --------- Fuel Indicator On
FireRegularArcs ---------—-- 1st car fuelled (Car Tank)
FireRegularArcs ---------—-- 1st car leaves (Outside Station)
FireInhibitorArcs --------- Fuel Indicator On

Simulation and analysis of MultEcore multilevel models based on rewriting logic

Replenish

Leave
Station

Outside
Station

Car Tank

Fuel
Indicator

Turn Fuel
Indicator On

Fig. 15 Gas station model with initial marking

FireRegularArcs ---------—-- 2nd car fuelled (Car Tank)
FireRegularArcs ---------—- 2nd car leaves (Outside Station)
FireResetInhibitorArcs ---- Disabled

FireRegularArcs ---------—- Station tank filled

The comments on the right indicate the corresponding effect
on the model. The MultEcore integration with Maude allows
us to specify sequence of rules to automatically generate
the desired model state and get its graphical representation
right away. A screenshot of the MultEcore tool is depicted in
Fig. 16, in which we can see how rule labels are selected from
alist corresponding to, the above sequence of rules. Note that
the MultEcore syntax of the initial state (depicted in Petri nets
syntax in Fig. 15) is in the background of Fig. 16. Pressing
Finish on such a wizard automatically provides the model
state in the MultEcore syntax, shown in Fig. 17, where we
have four tokens (token19211...token19214) in the Station
Tank place, representing that the station tank has been replen-
ished (highlighted at the top-left of Fig. 17), and four tokens
in the Outside Station place, representing that 4 cars have
left the station (highlighted at the bottom-right of Fig. 17).

4.2 Reachability analysis

To perform a more exhaustive verification of the model,
we can perform reachability analysis and bounded model-
checking of invariants, with which we can check safety
properties. Specifically, we can study the reachability of
given states using the search command, where the states to
check can be specified both using patterns or conditions on
the states. The search command explores the reachable state
space following a breadth-first strategy.

To carry out a search, we need to provide: (i) the model
from which to initiate the search, (ii) the maximum depth

of the search (even for terminating systems, a search may
take a long time), (iii) the pattern model to be reached (a
model with variables), and (iv) an optional property that has
to be satisfied by the reached state. Since the structure of
the PN does not change along the execution, we can specify
our pattern model leaving as variables the tokens in each
place. Then, the condition to satisfy at the target state may
be specified as an OCL expression. As result, MultEcore will
determine whether such a state is reachable, in the specified
number of steps, and if so, it may provide the specific path
leading to the state found.

Let us see how we can use the search command of Maude
to verify properties on the gas station example. For example,
we can verify that, starting from the marking depicted in
Fig. 15, the system can reach a marking where four cars have
left the station and the station tank is again full to continue
fuelling further cars. To do that, we just need to select the
initial model, the target pattern model, and write, for example,
the following OCL boolean expression:

id(4, "Station Tank").tokens->size() = 4
and id(4, "Outside Station").tokens->size() = 4

MultEcore responds positively, and provides the sequence
of rule names leading to such a solution:

FireInhibitorArcs
FireRegularArcs
FireRegularArcs
FireInhibitorArcs
FireRegularArcs
FireRegularArcs
FireInhibitorArcs
FireRegularArcs
FireRegularArcs
FireInhibitorArcs
FireRegularArcs
FireRegularArcs
FireResetInhibitorArcs
FireRegularArcs

Notice that this is the path to one of the possible states sat-
isfying this condition, which, like in this case, may be not
unique.

We can also check whether certain misbehaviours may
occur. Below we list properties we have verified in order to
assure the correctness of the model:

— Property 1. It is not possible to find a state where, simul-
taneously, the places Station Tank and Disabled contain
tokens. This would imply that either Evacuate or Replen-
ish transition could be fired more than once in a row,
which is not the behaviour we expect for this specific
system. We can check this property using the same initial
and pattern markings as before together with the follow-
ing property:

id(4, "Station Tank").tokens->size() > 0
and id(4, "Disabled").tokens->size() > 0

@ Springer

A.Rodriguez et al.

B-Biv|S| O W~ gla-|@-| @@ || % 2 ER|LL
TK1
—_— H190:0:0 #® Sequence of MCMT Rules m] X
tokens@2
ol z .
— 241@0.0-0 0] Select the sequence of rules to be applied to the instance model
tk2@0-0-0
e — torget@2 [weight=4)
tokens@2 e} E Available MCMT rules: Selected MCMT rules:
ationTan! Add Rule Move uo
>lo-0-0]
@ =G 0.0 1 numTokens=4 FireReuIarArcs FirelnhibitorArcs
G tk3@0-0-0 215@0-0-0 2 ibi i
— = FirelnhibitorArcs FireRegularArcs
tokens@2 e FireEmptyResetinhibitorArcs FireRegularArcs
O 255@0.0-0 F!relnhlbxtorAr(s
@ II s FireRegularArcs
TKe - = FireRegularArcs
t4@0-0-0 = prl (mere > ki
G 2 Rt I
tokens@2 e FireRegularArcs
FirelnhibitorArcs
5in@0.0.0 16003} torget@2 FireRegularArcs
AN U= G091 tapct@ FireRegularArcs
@2 FireEmptyResetInhibitorArcs
uelCar | FireReqularArcs |
60ut@0-0 C
QuipuAr @)
¥ A6
a6s@0-0-0(weight=1 N
source@2
— 211t@0-0-0 source L 1
a11in@0-0-
= ool L torget@2 @ 0-0-0]
inRegularArcs@2 1 — 29—
weight=1 OufsideStation
Guipuarce2.0-0-0 numTokens=0
— a%t@0-0-0 @0-0-
2115@0-0-0 Q10 torget 20n@0-0-0
source@2 weight=1 p10s@0-0-0 pes inlnhibitorArcs
- L €00 s0urce@Z |1y mFGelindicator
Eushdicato torget@2 ¥ 2100ut@0-00
numTokens=0 outRegularArcs@.
I’ I 212t@000 |
2125@0-0-0 torget

<

[7] Properties [2] Problems (@ MultEcore Log B Console 3 &g Progress [v/ ValidityView e EClass Information

MultEcore Console
--- Welcome to Maude ---

ZUELEETEEREERTETEEIN

Maude 3.1+smc built: Oct 13 2020 12:00:00
Copyright 1997-2020 SRI International
Wed Dec 16 12:48:59 2020

Fig. 16 MultEcore screenshot for sequence of rules-based execution

Since the system is not terminating, and we expect not to
find it, then we specify a bound, e.g., of 20. The answer
from MultEcore is ‘false’, indicating that such a state
cannot be reached within the given depth.

Property 2. It is not possible to find a state where either
the Fuel Indicator ON, Car Tank, and Disabled places
have more than one token. In other words, the indicator
is either ON or OFF, the car tank is either full or not, and
we cannot disable the station consecutively two times.
This property can be verified as the previous one using
the following OCL expression:

id(4, "Fuel Indicator ON").tokens->size() > 1
orid(4, "Car Tank").tokens->size() > 1
or id(4, "Disabled").tokens->size() > 1

Again, for a bound of 20, the answer from MultEcore is
‘“false’.

— Property 3. We can find a state where more than 5 cars
have successfully exited the station.

id(4, "Outside Station").tokens->size() > 5

@ Springer

The answer obtained is positive, and the path to the first
found solution is provided.

All the properties listed above have provided the expected
results, which further validates our model.

4.3 System abstraction for unbounded analysis

In the previous section we have carried out bounded model
checking of several behavioural properties. Although lim-
ited to a maximum depth, the verification of the properties
checked using the search command greatly increase the con-
fidence in the correctness of the system. However, bounded
model checking is an incomplete procedure, since a coun-
terexample could exist at a larger search depth. The problem
in this case is that the state space is infinite, and therefore, we
cannot complete the analysis in this way. One way to fully
verify the system is using a finite abstraction of it, that is, on
an appropriate quotient of the original system whose set of
reachable states is finite. The method proposed in [44] cre-
ates an abstraction of the original system by adding a set of
equations to collapse the infinite set of reachable states into
a finite set. The specification, extended with these equations,

Simulation and analysis of MultEcore multilevel models based on rewriting logic

1 ats@L1 , seL1s
token eplenis
a4t@1-1-+ A source®2 target@2 —— a3s@1-1*
° ight=4 1 @11+ H
tokens@2 target@2] @ adout@1-1 a3in@1-1 source@2
inRegularArcs@2
okens19312G 11+ outReqularArcs@2 g
token19212 rokens@2
GutendedPlacs (oo — (Eendeariz {11
StationTank a13t@1-1-4 AL3 a135@1-1* Disabled
_ okens19313@1-1-+| numTokens=4 target source numTokens=0
token19213 tokens@2
al3in@1-1-*
255@1-1-* ininhibitorArcs
source@2 AL z B e iurpumrc@b-i
t
ik tokens19314@1-1-4 target vacuate Source@2 a2t@1-1-+
token19214 . | weight=1
tokens@. alin@11] aZout@lrlr@z target@2
lc s
pr——
[5
> weight=1
asin@1-1-+ ast@1-1-*
inReqularArcs@2 target@2
EendedrransioP V|| about@1-1* Gupuarca i1 tendedPloc{ 114 nputhrc@2 a7t@1-1-+] 985011 Gupcad{ii),
FuelCar outReqularArcs@. A6 A6t @1-1 CarTank 75011 A7 target@2 TeaveStation Source@2 A8
- weight=1 numTokens=0 weight=1 weight=1
26s@1-1-* target@2 source@2 ATin@11* a8out@1-1-%
source@2 outReqularArcs@2
al1t@1-1-* 205@1-1-* inReqularArcs@2
target@2 allin@1-1-* source a8t@1-1-*
Cpnrcad inReqularArcs@2 inhibitorArc 11 Grencedmias>— o], target@2
AlL A9 GutsideStation
weight=1 — Token@2 _ numTokens=4 _
AL0 token11511 Token17811
Pl al0out@1-1-* P
1k = a -1 in@1-1-* ken11511@1-1-* | | D11+
alls@1-1 a10t@1-1-* butRegularArcs@] target] adin@L-L okeni1>11@ token17811@1-1
source@2 target@2 S tokens@2 tokens@2
|a105@1—1—' 1-1-#{L
@ source@2 TurnFuellndicatorON P
FuellndicatorON —— token15711 fgokenlS7II@LL” J | o cns13611@1-14 tOKeN1361L
numTokens=0 2125@1-1- L2 2 tokens@2 pS—
source target
al2in@1-1-* |

Fig. 17 MultEcore syntax of the Gas station model state after execution

need to still satisfy the usual executability conditions—the
equations must be ground Church-Rosser and terminating,
and the rules should be ground coherent with them—but
the procedure is quite simple, and the abstraction is then
correct by construction. The method is valid both for the ver-
ification of invariants and LTL formulas with an additional
deadlock-freedom requirement. Indeed, an automatic proce-
dure to complete specifications so that the requirement is
satisfied has been given in [15].

The key idea about abstraction for invariant verifica-
tion is that if we can verify an invariant on the abstracted
specification—the specification with the equations defining
the abstraction—then it also holds in the original specifica-
tion. The implication, however, only works in one direction.
If we find a counterexample in the abstracted system it does
not necessarily mean that a counterexample exists for the
original system.

Let us apply the technique to our example. There are sev-
eral reasons why our Petri nets system is infinite. On the one
hand, we have that tokens get accumulated in the Outside
Station place, since every time a car gets its tank filled, the
car leaves the station and a new token is added to the place. On
the other hand, since we are representing tokens as objects,
every time a new token is created it gets a new unique iden-
tifier. Thus, even though from the Petri nets point of view,
tokens are anonymous dots in a place, in our representation

tokens are objects that have names and identifiers, and the
counter object keeps getting its value attribute increased.
We may, however, abstract from this information, since nei-
ther the tokens’ names nor identifiers are relevant, nor are we
really concerned about the number of tokens we have in the
Outside Station place. For the operation of the Petri net, the
number of tokens in the other places is not relevant either.
Specifically, since all arc weights are one, the analysis would
be the same if having four or three tokens in the Station Tank
place.

We introduce equations that abstract the Petri net system
is the following way: (1) The Outside Station place gets its
number of tokens decremented if it is bigger than one, (2) the
number of tokens in the Station Tank place becomes 3 if it
gets 4 tokens, (3) names and identifiers of token objects are
reset into a range of values not used by the counter object,
and (4) the counter object gets its value attribute restarted to
its initial value. Notice that when we eliminate or rename a
token, we also act on the relation object associating it to the
place in which it is located. In this way, we not only make all
places to have either zero or one tokens in them, but names
and identifiers are reused from a small set of possible values.

This abstraction makes the state space finite. And we
can use it to verify LTL formulas on the abstracted model.
Temporal logic allows the specification of safety proper-
ties (something bad never happens) and liveness properties

@ Springer

A.Rodriguez et al.

(something good eventually happens), which are related to
the infinite behaviour of a system. However, we need a few
additional definitions first.

Kripke structures are the natural models for propositional
temporal logic. We need to understand how a Kripke struc-
ture is associated to the rewrite theory specified by a Maude
system module. Basically, a Kripke structure is a (total) tran-
sition system to which we have added a collection of unary
state predicates on its set of states. Therefore, since the mod-
els of rewriting logic are also transition systems, we need
to make explicit the type of each of the states (System in
our specification) and the atomic propositions on which we
define our state predicates. In our case, we use OCL boolean
expressions as basic propositions, associating to each state
those boolean expressions that are satisfied in such a state.
For example, we may check the following properties

— Property 1. To check the property stating that it is always
([]) true that eventually (<>) the system gets to a state
in which there is a token on either the Disabled or the
Outside Station place can be checked using the following
LTL formula:

[1 <> (id(4, "Disabled").tokens->size() > 0
\/ id(4, "Outside Station").tokens->size() > 0)

In this case, the answer obtained is positive.

— Property 2. The following LTL formula states that if we
reach a state in which there is a token in the Fuel Indicator
On place, then eventually a state in which there is a token
in the Outside Station place is reached.

[1 (id(4, "Fuel Indicator ON").tokens->size() > 0
-> []<> id(4, "OutsideStation").tokens->size() > 0)

In this case the response is negative. Indeed, it may hap-
pen that the Petri net loops in the upper part, evacuating
and replenishing the station tank over and over again. As
usual, if the formula is not true, the model checker gives
a counterexample, in the form of a sequence of states.

The interested reader can find the complete outputs in [55],
together with the source files used to reproduce the execution.

5 Related work

In [56], the initial steps towards the use of rewriting logic
for providing a semantics of the MultEcore language which
could be used for model simulation was presented. The
present paper significantly extends it in several directions, but
mainly in its expressivity, support for analysis, and usability.
In summary, the main contributions of this paper in compar-
ison to [56], are:

@ Springer

— MultEcore has now full support for the definition and
manipulation of attributes. Support for the Object Con-
straint Language (OCL) [13] has been added for the
manipulation of attribute values and for the specification
of conditions, which greatly improves the expressiveness
of the tool.

— The expressivity of MCMTs have been extended and
improved, with respect to those used in [41,56] in the
following three main ways: (i) attribute definition and
manipulation, which brings additional expressivity to
the specification of behaviour; (ii) rule conditions that
add extra requirements for a rule to be applied; and (iii)
nested boxes to handle submodel collections, improving
expressiveness and reducing the proliferation of rules. A
preliminary and very limited version of these boxes was
presented in [56,58]. In this paper we presented a fully-
operational full-fledged version of them, where boxes
may appear in both sides of the rules, boxes may be
nested, and each of them may have an explicit cardinality
specified.

— We present in this paper a rewriting logic semantics
of MLM hierarchies and MCMT rules through their
representation in Maude. This formal representation of
MultEcore models allows us to execute and analyse such
models using Maude’s formal tools. Specifically, we have
illustrated the application of model checking, both in the
search for states satisfying provided conditions, and for
the verification of linear temporal logic formulas.

— Abidirectional transformation between MultEcore MLM
models and Maude specifications has been developed.
This functional infrastructure connects MultEcore to
Maude, allowing us, not only to design our multilevel
modelling hierarchy and specify its MCMTs, but also
to simulate the specified systems and analyse and verify
them using several techniques. Within our infrastructure,
we encapsulate Maude as a background process that han-
dles the instructions and return the execution and analysis
results, given by the interface that the user uses to inter-
act. Whist there was some basic infrastructure for this in
[56], this is now a mature tool, not only more efficient
and configurable, but covering all the features of the lan-

guage.

Even though there exist a plethora of MLM approaches
and tools, only a few of them support DSML behaviour
specification and execution. Melanee [2] is one of the most
advanced tools for MLM. The tool supports a variant of OCL
with deep semantics (DeepOCL) which has been integrated
with the Atlas Transformation Language (ATL) for model
transformations. Lange shows in [36] how this tool can be
used to check constraints spanning multiple classification
levels which can be defined and executed. Although Melanee
itself is not natively supporting tools for simulation/execu-

Simulation and analysis of MultEcore multilevel models based on rewriting logic

tion through the specification of the execution semantics,
i.e., (multilevel) transformation rules, there are some works
on top of it that aims to achieve this (see, e.g., [3]). In that
work, the model execution mechanism is based on a ser-
vice API and a plug-in mechanism, and the communication
between the modelling and the execution environments is
realised using socket-based communication. We provide in
our approach the whole set of tools necessary to directly
be able to define the structure of the multilevel hierarchy,
specify the multilevel model transformation rules (MCMTs),
execute/simulate the models, and analyse the system.

The MetaDepth tool [17] is a well-known framework
within the MLM community. It is integrated with the Epsilon
languages [25], which permits using the Epsilon Object Lan-
guage (EOL) as an action language to define behaviour for
metamodels, as well as the Epsilon Validation Language
(EVL) for expressing constraints. Both EOL and EVL are
extensions of OCL. The approach implements the interface
of the connectivity layer in a way to make EOL aware of
the multiple ontological levels providing it with a multilevel
nature. However, the authors of [17] state that MetaDepth can
be used as a normal two-level meta-modelling environment
when it comes to the execution of behaviour of the models.
Thus, for the actual execution they would have to flatten their
multilevel language to a two-level version in order to run the
models. To the best of our knowledge there is not yet a MLM
tool that supports or integrates model checking and analysis
capabilities within its MLM tool-set.

Other authors have attempted to handle pattern identifica-
tion and specification to define reusable model transforma-
tion rules. There exist a diverse set of approaches that bring
solutions to pattern definition and application in the context
of graph transformations. In [29], Guerra and de Lara explore
recursion as a graph transformation mechanism. They pro-
vide double pushout (DPO) rules with base and recursive
conditions, together with mechanisms to pass the match-
ing between successive recursion steps. Lindqvist et al. [37]
propose the star operator, which is suited to find repetitive
occurrences of a specific modelling pattern. However, the
star operator is only defined for matching model extracts, and
not to perform transformations. In [28], Grgnmo, Krogdahl,
and Mgller-Pedersen present a collection operator for graph
transformation and show its usage to a variety of Coloured
Petri nets. Using this operator, it is possible to match several
similar structures within the model. They theoretically define
how nesting would work by producing an ad-hoc rule that
would fit to the specific case. We follow a similar approach
by defining the rule in a generic way and then the transfor-
mation engine provides also a generic version in the Maude
specification. The advantage of our approach with respect to
the collection operator is that we do not physically produce
an unfolded rule, but it is dynamically unfolded and used at
run-time. It is during the matching at run-time when the rule

is unfolded guided by the cardinalities provided in the rule.
In [51], Rensink and Kuperus propose a transformation lan-
guage that uses an amalgamation scheme for nested graph
transformation rules, where pattern elements are combined
with universal and existing quantifiers. The transformation
language is used in the GROOVE tool. Henshin [61] is an in-
place model transformation language for the EMF. Among
other features, it implements a rule-nesting mechanism [1]
that provides a for-each operator for rules. In nested rules,
the outer rule is referred to as kernel rule and the inner rule
as multi rule. During execution of a nested rule, the kernel
rule is matched and executed once. Afterwards, the match is
used as a starting point to match the multi-rule as often as
possible and execute it for each match.

There are several traditional MDSE approaches that deal
with execution and verification related to our proposal. In
[53], Rivera et al. use Maude to represent 2-level models to
be able to simulate and perform formal analysis and model
checking on them. Such work served us as inspiration and
starting point. We were considering either implementing our-
selves an execution engine within MultEcore or using an
existing tool where to rely on. Studying some works where
Maude was used and analysing how the language could be
customised together with its plethora of existing capabilities
made us to follow such a path.

We also analysed other mature tools in the context of
model execution via operational semantics, e.g., Henshin
[61] or the GEMOC Studio [10,16], which helped us to
understand how the user could interact with the execution
tools from an Eclipse-based application. In the context of
verification, GROOVE (GRaph-based Object-Oriented VEr-
ification) [27,49] is a tool for software model checking of
object-oriented systems. It can be used for modelling, analy-
sis and verification and integrates all these functionalities in
an easy to use interactive GUIL. While we already integrate
into MultEcore some Maude functionalities for execution and
verification, we still have to work in this direction to ease
the process to the modeller. We see GROOVE as a viable
approach to achieve a better usability degree in MultEcore.

6 Conclusions and future work

In this paper, we have presented an infrastructure for execu-
tion and analysis of multilevel modelling languages.

To make this possible, we have integrated Maude into the
MultEcore tool, allowing us not only to define multilevel
hierarchies and their behaviours by means of MCMTs, but
also carry out simulation and model checking using different
analysis techniques. An important element of our approach
is that Maude is used as a backend tool, hidden to the user
such that the interaction is entirely done with MultEcore. This
makes the modeller unaware of the Maude details. Although

@ Springer

A.Rodriguez et al.

in the last years several traditional two-level tools have pro-
vided support for the whole cycle of behavioural DMSLs
(from design to simulation and verification), to the best of our
knowledge this is the first work where a MLM tool incorpo-
rates capabilities to perform model checking and other formal
analyses. We find that the work presented in this paper can
open new doors to the MLM field, as this tool can be used
to define behavioural multilevel DSMLs, execute them, and
verify them.

Apart from the major improvements in the infrastructure
itself, we have improved and extended the MCMTs capa-
bilities, by allowing nested boxes to represent collections,
incorporated attribute manipulations, and specification of
conditions. Basic support for OCL is also provided, which is
very useful for the manipulation of attributes, the specifica-
tion of box cardinalities, the specification of rule conditions,
and the specification of expressions and conditions to be used
in the formal checks, including LTL formulas.

To validate and demonstrate that our infrastructure works
and that actual execution and analysis can be carried out,
we have provided a case study where a Petri net model that
captures a gas station is simulated applying consecutively
the MCMT rules defined in MultEcore. The goal of this case
study has been to evaluate the usability and practicability of
the developed infrastructure. We are already considering how
to evaluate our tool against other MLM approaches that allow
the modeller to perform execution on models by defining in-
place model transformations. We have validated and verified
the modelled system using reachability analysis and model
checking techniques on an abstracted version of the model.
We refer the reader to the main MultEcore webpage [54] for
further details and examples.

We plan to integrate into MCMTs the capabilities that
a programming language brings such as reasoning about
functions, expressions, type specifications, and data manipu-
lations. Our current implementation of certain OCL functions
represents a step towards this goal. We are already working
on adapting the complete mOdCL (Maude + OCL) [24] to
our multilevel infrastructure so that we can make use of the
full power of OCL in a Multilevel context. This would allow
us, for instance, to specify Coloured Petri nets [32] which
combine classical Petri nets with a programming language
[63].

@ Springer

In the PN example presented in this paper, the behaviour
of regular PNs is specified by one single MCMT, and the
behaviour of reset/inhibitor PNs by another one. However,
this is an exceptional case, since the behaviour of systems
is typically described by a bigger number of MCMT rules,
each one specifying one of the possible actions in the DSML
being modelled. In systems like the robot system modelled
in [40], the production line system modelled in [56], etc., one
has many MCMTs, defined at different levels of abstraction.
In these cases, the possibilities for horizontal/vertical exten-
sions was clearly illustrated, showing how MCMTs defined
for models in higher levels are applicable on lower levels. In
the case of PNs, the only action is the firing of transitions,
and the fact that the types of incoming arcs may be arbitrarily
mixed, force us to model the action in one single MCMT per
type of PN. However, the PNs case points an interesting issue,
which we believe is worth investigating in the future. The fact
that the Fire reset/inhibitor transition rule (Fig. 7) extends the
the Fire regular transition MCMT (Fig. 4) makes us think on
the possibility of developing mechanisms for MCMT exten-
sion, which may further improve the degree of modularity
and reusability of MCMTs.

Ultimately, we plan to further advance on the interface that
connects MultEcore to Maude, bringing more advanced func-
tionalities such as an interactive editor, a smoother experience
to the user with the graphical editor and additional Maude
capabilities to, for instance, customise the strategy language
and have more control on the execution and analysis.

A Petri nets multilevel hierarchy

See Fig. 18.

Simulation and analysis of MultEcore multilevel models based on rewriting logic

(a)

petri-nets-concepts

Y e nodes@1-*-*
1-* name : string e ERe N
eference 1-* name : string
Dy K———
arcs@1-*-* 11
EReference source@1-2-3 target@1-2-3 -
|eVe| 1 EReference EReference
EClass
-2-3
Transition ‘
ace
inArcs@1-2-3
EReference
OutArcs@1-2-3 | 1-* name : string
TRer. o
f
(b) regular-petri-nets e
source@2-2-1 InputArc target@2-2-1
source 1-* weight : int 11
RegularPlace 1mRequI.arArcs@1—2—1 RegularTransition
tokens@2-2-1 inArcs
level 2 1-* numTokens : int
EReference outRegularArcs@1-2-1
11 outArcs .
ecass 0221 (221] —
target@2-2-
Token OutputArc source@2-2-1
t t R i -
arget 1-* weight : int source
(¢) reset-inhibitor-petri-nets 4re@2
ResetArc
source@1-1-1 target@1-1-1
source@2 target@2 1.1
- 1.1
RegularPlace inResetArcs@1-1-1 RegularTransition™
ExtendedPlace inArcs@2 ExtendedTransition
inInhibitorArcs@1-1-1f
|eVe| 3 inArcs@2
1.1
‘ 1.1
source@1-1-1 InhibitorArc target@1-1-1 |
source@2 target@2
<> T —— :
% (d) reset-inhibitor-petri-net-example
tk1@0-0-0
tokens@2
Token@2 m @ lnputArc@2. M
pl al
k2 tk2@0-0-0 als@0-0-0 — alt@0-0-0
numTokens=3) weight=2
tokens@2 source target@2
Y| Gl
c 3 tk3@0-0-0 0-0-0 o-0-d
B tokens@2 alin@0-0-0 a4s@0-0-0 a4 AUt©0-0-0 o4
2 inReqularArcs@2 weight=3 target@2 numTokens=0
—
' source@2
Token@2, M
< 4 a40ut@0-0-0
e SN Y v BN e 7
5 tokens@2 2 b25@0-0-0 a2 a2t@0-0-0
—_— numTokens=2 source a5out@0-0-0
target outReqularArcs@2

tk5

Token@2 —

tk5@0-0-0

tokens@2

Erendedplad [0:0-0

B3} a35@0-0-0)

InhibitorArc

|an@
a5

e [

PS5

numTokens=0

a3

numTokens=0
source

inResetArcs a5s@0-0-0 a5t@0-0-0,
weight=2
target@2
source@2 7
a3in@0-0-0
inlnhibitorArcs
0-0-0|
=
a3t@0-0-0
target

Fig. 18 Petri nets multileve

1 hierarchy

@ Springer

A.Rodriguez et al.

References

10.

11.

12.

14.

15.

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: advanced concepts and tools for in-place EMF model
transformations. In: 13th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2010), pp.
121-135 (2010). https://doi.org/10.1007/978-3-642-16145-2_9
Atkinson, C., Gerbig, R.: Flexible deep modeling with Melanee.
In: Betz, S., Reimer, U. (eds.) Modellierung 2016, LNI, vol. 255,
Gesellschaft fiir Informatik, Bonn, pp. 117-122 (2016)

Atkinson, C., Gerbig, R., Metzger, N.: On the execution of deep
models. In: 1st International Workshop on Executable Model-
ing co-located with ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS
2015), pp. 28-33 (2015)

Atkinson, C., Kiihne, T.: Processes and products in a multi-level
metamodeling architecture. Int. J. Software Eng. Knowl. Eng.
11(06), 761-783 (2001)

Atkinson, C., Kiihne, T.: The essence of multilevel metamodeling.
In: UML 2001—The Unified Modeling Language, Modeling Lan-
guages, Concepts, and Tools, pp. 19-33 (2001). https://doi.org/10.
1007/3-540-45441-1_3

Atkinson, C., Kiihne, T.: Reducing accidental complexity in
domain models. Softw. Syst. Model. 7(3), 345-359 (2008)
Atkinson, C., Kiihne, T.: In defence of deep modelling. Inf. Softw.
Technol. 64, 36-51 (2015). https://doi.org/10.1016/j.infsof.2015.
03.010

Atkinson, C., Kiihne, T.: On evaluating multi-level modeling. In:
Proceedings of MULTI @ MODELS, pp. 274-277 (2017)
Bernardinello, L., de Cindio, F.: A survey of basic net models and
modular net classes. In: Advances in Petri Nets 1992, The DEMON
Project, Springer, pp. 304-351 (1992). https://doi.org/10.1007/3-
540-55610-9_177

Bousse, E., Wimmer, M.: Domain-level observation and control for
compiled executable dsls. In: Kessentini, M., Yue, T., Pretschner,
A., Voss, S., Burguefio L. (eds.), 22nd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems,
MODELS 2019, Munich, Germany, September 15-20,2019, IEEE,
pp- 150-160 (2019). https://doi.org/10.1109/MODELS.2019.000-
6

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software
Engineering in Practice. Synthesis Lectures on Software Engi-
neering. Morgan & Claypool Publishers (2012). https://doi.org/
10.2200/S00441ED1V01Y201208SWEO001

Cabot, J., Gogolla, M.: Object constraint language (OCL): a defini-
tive guide. In: Bernardo, M., Cortellessa, V., Pierantonio, A. (eds.),
Formal Methods for Model-Driven Engineering—12th Interna-
tional School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2012, Bertinoro,
Italy, June 18-23,2012. Advanced Lectures, Lecture Notes in Com-
puter Science, vol. 7320, Springer, pp. 58-90 (2012). https://doi.
org/10.1007/978-3-642-30982-3_3

. Clark, T., Warmer, J.: Object Modeling With the OCL: The Ratio-

nale Behind the Object Constraint Language, vol. 2263, Springer
(2003)

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N.,
Meseguer, J., Quesada, J.F.: Maude: specification and program-
ming in rewriting logic. Theoret. Comput. Sci. 285(2), 187-243
(2002)

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N.,
Meseguer, J., Talcott, C.L. (eds.) All About Maude—A High-
Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic. Lecture Notes in Computer
Science, vol. 4350, Springer (2007). https://doi.org/10.1007/978-
3-540-71999-1

@ Springer

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Combemale, B., Barais, O., Wortmann, A.: Language engineering
with the GEMOC studio. In: 2017 IEEE International Confer-
ence on Software Architecture Workshops, ICSA Workshops 2017,
Gothenburg, Sweden, April 5-7,2017, IEEE Computer Society, pp.
189-191 (2017). https://doi.org/10.1109/ICSAW.2017.61

de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In:
Objects, Models, Components, Patterns, Incs, vol. 6141, Springer,
pp. 1-20 (2010). https://doi.org/10.1007/978-3-642-13953-6_1
de Lara, J., Guerra, E.: Generic meta-modelling with concepts,
templates and Mixin layers. In: Model Driven Engineering Lan-
guages and Systems—13th International Conference, MODELS,
pp- 16-30 (2010). https://doi.org/10.1007/978-3-642-16145-2_2
de Lara, J., Guerra, E., Cuadrado, J.S.: When and how to use mul-
tilevel modelling. ACM Trans. Softw. Eng. Methodol. (TOSEM)
24(2), 12 (2014)

de Lara, J., Vangheluwe, H.: AToM 3: a tool for multi-formalism
and meta-modelling. In: International Conference on Fundamen-
tal Approaches to Software Engineering, Springer, pp. 174-188
(2002)

Duran, F., Eker, S., Escobar, S., Marti-Oliet, N., Meseguer, J.,
Rubio, R., Talcott, C.L.: Programming and symbolic computation
in Maude. J. Log. Algebraic Methods Program. (2020). https://doi.
org/10.1016/j.jlamp.2019.100497

Duran, F., Garavel, H.: The rewrite engines competitions: a rec-
trospective. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B.
(eds.) Tools and Algorithms for the Construction and Analysis
of Systems—25 Years of TACAS: TOOLympics, Held as Part of
ETAPS 2019, Proceedings, Part III, Lecture Notes in Computer
Science, vol. 11429, Springer, pp. 93—100 (2019). https://doi.org/
10.1007/978-3-030-17502-3_6

Durdn, F.,, Rocha, C., Alvarez, J.M.: Tool interoperability in the
maude formal environment. In: Corradini, A., Klin, B., Cirstea,
C. (eds.) Algebra and Coalgebra in Computer Science—4th Inter-
national Conference, CALCO 2011, Winchester, UK, August
30-September 2, 2011. Proceedings, Lecture Notes in Computer
Science, vol. 6859, Springer, pp. 400406 (2011). https://doi.org/
10.1007/978-3-642-22944-2_30

Duran, F., Roldan, M.: Validating OCL constraints on Maude pro-
totypes of UML models. Universidad de Mélaga, Technical Report
(2012)

The Epsilon Object Language (EOL). https://www.eclipse.org/
epsilon/doc/eol/

Garavel, H., Tabikh, M., Arrada, I.: Benchmarking imple-
mentations of term rewriting and pattern matching in alge-
braic, functional, and object-oriented languages—the 4th rewrite
engines competition. In: Rusu, V. (ed.) Rewriting Logic and Its
Applications—12th International Workshop, WRLA 2018, Held as
a Satellite Event of ETAPS, Proceedings, Lecture Notes in Com-
puter Science, vol. 11152, Springer, pp. 1-25 (2018). https://doi.
org/10.1007/978-3-319-99840-4_1

Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova,
M.: Modelling and analysis using GROOVE. Int. J. Softw. Tools
Technol. Transf. 14(1), 15-40 (2012). https://doi.org/10.1007/
s10009-011-0186-x

Grgnmo, R., Krogdahl, S., Mgller-Pedersen, B.: A collection oper-
ator for graph transformation. Softw. Syst. Model. 12(1), 121-144
(2013). https://doi.org/10.1007/s10270-011-0190-3

Guerra, E., de Lara, J.: Adding recursion to graph transformation.
ECEASST (2007). https://doi.org/10.14279/tuj.eceasst.6.56
Halder, A., Venkateswarlu, A.: A study of petri nets modeling anal-
ysis and simulation. Department of Aerospace Engineering Indian
Institute of Technology Kharagpur, India (2006)

Hee, van, K., Leurs, M., Post, R.: Yasper : Yet another smart process
editor (poster). In: 2005 Symposium on Verification and validation
of software systems (VVSS 2005) (2005)

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1016/j.infsof.2015.03.010
https://doi.org/10.1016/j.infsof.2015.03.010
https://doi.org/10.1007/3-540-55610-9_177
https://doi.org/10.1007/3-540-55610-9_177
https://doi.org/10.1109/MODELS.2019.000-6
https://doi.org/10.1109/MODELS.2019.000-6
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/ICSAW.2017.61
https://doi.org/10.1007/978-3-642-13953-6_1
https://doi.org/10.1007/978-3-642-16145-2_2
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1007/978-3-030-17502-3_6
https://doi.org/10.1007/978-3-030-17502-3_6
https://doi.org/10.1007/978-3-642-22944-2_30
https://doi.org/10.1007/978-3-642-22944-2_30
https://www.eclipse.org/epsilon/doc/eol/
https://www.eclipse.org/epsilon/doc/eol/
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.1007/978-3-319-99840-4_1
https://doi.org/10.1007/s10009-011-0186-x
https://doi.org/10.1007/s10009-011-0186-x
https://doi.org/10.1007/s10270-011-0190-3
https://doi.org/10.14279/tuj.eceasst.6.56

Simulation and analysis of MultEcore multilevel models based on rewriting logic

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and
CPN tools for modelling and validation of concurrent systems. Int.
J. Softw. Tools Technol. Transf. 9(3), 213-254 (2007). https://doi.
org/10.1007/s10009-007-0038-x

Kelly, S., Tolvanen, J.: Domain-Specific Modeling: Enabling Full
Code Generation. Wiley, New York (2008)

Kiihne, T.: Exploring potency. In: Proceedings of the 21th
ACMI/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, MODELS, pp. 2-12 (2018). https://
doi.org/10.1145/3239372.3239411

Kiihne, T.: A story of levels. In: Proceedings of MULTI @ MOD-
ELS, pp. 673-682 (2018)

Lange, A.: dACL.: the deep constraint and action language for static
and dynamic semantic definition in Melanee (2016). https://madoc.
bib.uni-mannheim.de/43490/. Unpublished

Lindqvist, J., Lundkvist, T., Porres, I.: A query language with
the star operator. ECEASST (2007). https://doi.org/10.14279/tuj.
eceasst.6.55

Macias, F.: Multilevel modelling and domain-specific languages.
PhD Thesis, Western Norway University of Applied Sciences and
University of Oslo (2019)

Macias, F., Rutle, A., Stolz, V.: Multilevel modelling with Mul-
tEcore: a contribution to the MULTI 2017 challenge. In: Proceed-
ings of MULTI @ MODELS, pp. 269-273 (2017)

Macias, F., Rutle, A., Stolz, V., Rodriguez-Echeverria, R., Wolter,
U.: An approach to flexible multilevel modelling. Enterp. Model.
Inf. Syst. Archit. Int. J. Concept. Model. 13, 10:1-10:35 (2018).
https://doi.org/10.18417/emisa.13.10

Macias, F., Wolter, U., Rutle, A., Duran, F., Rodriguez-Echeverria,
R.: Multilevel coupled model transformations for precise and
reusable definition of model behaviour. J. Log. Algebraic Methods
Program. 106, 167-195 (2019). https://doi.org/10.1016/j.jlamp.
2018.12.005

Meseguer, J.: Conditioned rewriting logic as a united model of
concurrency. Theor. Comput. Sci. 96(1), 73—155 (1992). https://
doi.org/10.1016/0304-3975(92)90182-F

Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr.
Program. 81(7-8), 721-781 (2012). https://doi.org/10.1016/j.jlap.
2012.06.003

Meseguer, J., Palomino, M., Marti-Oliet, N.: Equational abstrac-
tions. Theor. Comput. Sci. 403(2-3), 239-264 (2008). https://doi.
org/10.1016/j.tcs.2008.04.040

Meta Object Facility (MOF) specification 2.5.1. https://www.omg.
org/spec/MOF

Mohagheghi, P., Gilani, W., Stefanescu, A., Ferniandez, M.A.,
Nordmoen, B., Fritzsche, M.: Where does model-driven engineer-
ing help? Experiences from three industrial cases. Softw. Syst.
Model. 12(3), 619-639 (2013)

Murata, T.: Petri nets: properties, analysis and applications. Proc.
IEEE 77(4), 541-580 (1989)

Reisig, W.: Understanding Petri Nets—Modeling Techniques,
Analysis Methods. Case Studies, Springer (2013). https://doi.org/
10.1007/978-3-642-33278-4

Rensink, A.: The GROOVE simulator: a tool for state space gener-
ation. In: Pfaltz, J.L.., Nagl, M., 6hlen, B.B. (eds.) Applications of
Graph Transformations with Industrial Relevance, Second Inter-
national Workshop, AGTIVE 2003, Charlottesville, VA, USA,
September 27-October 1, 2003, Lecture Notes in Computer Sci-
ence, vol. 3062, Springer, pp. 479-485 (2003). https://doi.org/10.
1007/978-3-540-25959-6_40

Rensink, A.: The GROOVE simulator: a tool for state space gen-
eration. In: International Workshop on Applications of Graph
Transformations with Industrial Relevance, Springer, pp. 479485
(2003)

Rensink, A., Kuperus, J.: Repotting the geraniums: on nested graph
transformation rules. In: Electronic Communication of the Euro-

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

pean Association of Software Science and Technology, vol. 18
(2009). https://doi.org/10.14279/tuj.eceasst.18.260

Rivera, J.E., Durén, F., Vallecillo, A.: A graphical approach for
modeling time-dependent behavior of DSLs. In: Visual Languages
and Human-Centric Computing, 2009. VL/HCC 2009. IEEE Sym-
posium on, IEEE, pp. 51-55 (2009)

Rivera, J.E., Duran, F., Vallecillo, A.: Formal specification
and analysis of domain specific models using Maude. Sim-
ulation 85(11-12), 778-792 (2009). https://doi.org/10.1177/
0037549709341635

Rodriguez, A., Duréan, F., Kristensen, L.M.: MultEcore webpage
(2021). https://ict.hvl.no/multecore/

Rodriguez, A., Durdn, F.,, Kristensen, L.M.: Petri nets experiment
resources: MultEcore and Maude files (2021). https://bitbucket.
org/phdalejandro/no.hvl.multecore.examples.sosym.petrinets
Rodriguez, A., Durdn, F.,, Rutle, A., Kristensen, L.M.: Executing
multilevel domain-specific models in maude. J. Object Technol.
18(2), 1-21 (2019). https://doi.org/10.5381/j0t.2019.18.2.a4
Rodriguez, A., Macias, F.: Multilevel modelling with MultEcore:
a contribution to the MULTI process challenge. In: Proceedings
of MULTI @ MODELS, pp. 152-163 (2019). https://doi.org/10.
1109/MODELS-C.2019.00026

Rodriguez, A., Rutle, A., Kristensen, L.M., Duran, F.: A foundation
for the composition of multilevel domain-specific languages. In:
MULTI@ MoDELS, pp. 88-97 (2019). https://doi.org/10.1109/
MODELS-C.2019.00018

Roldan, M., Durén, F.: Dynamic validation of OCL constraints
with mOdCL. Electron. Commun. Eur. Assoc. Softw. Sci. Technol.
(2011). https://doi.org/10.14279/tuj.eceasst.44.625

Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
Eclipse Modeling Framework, Pearson Education (2008)

Striiber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf,
M., Tichy, M.: Henshin: A usability-focused framework for EMF
model transformation development. In: 10th International Confer-
ence, ICGT 2017, pp. 196-208 (2017). https://doi.org/10.1007/
978-3-319-61470-0_12

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,
Van Mierlo, S., Ergin, H.: AToOMPM: a web-based modeling envi-
ronment. In: MODELS-JP 2013, CEUR Workshop Proceedings,
vol. 1115, pp. 21-25 (2013)

Ullman, J.D.: Elements of ML Programming, Prentice-Hall, Inc.
(1994)

The Unified Modelling Language (UML) specification 2.5.1.
https://www.omg.org/spec/UML

Van Mierlo, S., Barroca, B., Vangheluwe, H., Syriani, E., Kiihne, T.:
Multi-level modelling in the Modelverse. In: MULTI@ MoDELS,
CEUR Workshop Proceedings, vol. 1286, pp. 83-92 (2014)
Verbeek, HM.W., Wynn, M. T., van der Aalst, W.M.P., ter Hofstede,
A.H.M.: Reduction rules for reset/inhibitor nets. J. Comput. Syst.
Sci. 76(2), 125-143 (2010). https://doi.org/10.1016/j.jcss.2009.06.
003

Warmer, J., Kleppe, A.: The Object Constraint Language Second
Edition: Getting Your Models Ready for MDA, Addison-Wesley
Educational Publishers (2003)

Wolter, U., Macias, F.,, Rutle, A.: The Category of Typing Chains
as a Foundation of Multilevel Typed Model Transformations.
Technical Report 2019-417, University of Bergen, Department of
Informatics (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1145/3239372.3239411
https://doi.org/10.1145/3239372.3239411
https://madoc.bib.uni-mannheim.de/43490/
https://madoc.bib.uni-mannheim.de/43490/
https://doi.org/10.14279/tuj.eceasst.6.55
https://doi.org/10.14279/tuj.eceasst.6.55
https://doi.org/10.18417/emisa.13.10
https://doi.org/10.1016/j.jlamp.2018.12.005
https://doi.org/10.1016/j.jlamp.2018.12.005
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1016/j.tcs.2008.04.040
https://doi.org/10.1016/j.tcs.2008.04.040
https://www.omg.org/spec/MOF
https://www.omg.org/spec/MOF
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/10.14279/tuj.eceasst.18.260
https://doi.org/10.1177/0037549709341635
https://doi.org/10.1177/0037549709341635
https://ict.hvl.no/multecore/
https://bitbucket.org/phdalejandro/no.hvl.multecore.examples.sosym.petrinets
https://bitbucket.org/phdalejandro/no.hvl.multecore.examples.sosym.petrinets
https://doi.org/10.5381/jot.2019.18.2.a4
https://doi.org/10.1109/MODELS-C.2019.00026
https://doi.org/10.1109/MODELS-C.2019.00026
https://doi.org/10.1109/MODELS-C.2019.00018
https://doi.org/10.1109/MODELS-C.2019.00018
https://doi.org/10.14279/tuj.eceasst.44.625
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/978-3-319-61470-0_12
https://www.omg.org/spec/UML
https://doi.org/10.1016/j.jcss.2009.06.003
https://doi.org/10.1016/j.jcss.2009.06.003

A.Rodriguez et al.

Alejandro Rodriguez is a Ph.D.
student at the Western Norway
University of Applied Sciences.
He is currently researching in
Model-driven software engineer-
ing, Multilevel Modelling and
coloured Petri net fields. He is
part of the Software Engineering,
Sensor Networks and Engineering
Computing department.

Francisco Duran is Full Profes-
sor at the Department of Com-
puter Science of the University of
Midlaga, Spain. He received his
Ph.D. degree in Computer Sci-
ence from the University of
Malaga in 1999, after several years
as an International Fellow at SRI
International, CA. He is one of the
developers of the Maude system,
and his research interests deal with
the application of formal methods
to software engineering, includ-
ing topics such as cloud systems,
model-driven engineering,

component-based software development, open distributed program-
ming, reflection and meta-programming, and software composition.

@ Springer

Lars Michael Kristensen received
the PhD in computer science from
University of Aarhus, and is cur-
rently professor in software engi-
neering at Western Norway Uni-
versity of Applied Sciences. He
has published more than 70 papers
in strictly referred journal and
conferences, is member of the Edi-
torial Board of the TopNoC
Springer journal, and is a mem-
ber of the steering committee for
the International Petri Nets con-
ference. He is co-author of the
most recent textbook on Coloured

Petri Net and CPN Tools which is one of the most widely used soft-
ware tools for modelling and validation of concurrent systems.

	Simulation and analysis of MultEcore multilevel models based on rewriting logic
	Abstract
	1 Introduction
	1.1 Outline

	2 Multilevel modelling of Petri nets
	2.1 The MultEcore tool
	2.2 Petri nets metamodel
	2.3 Regular Petri nets
	2.3.1 A metamodel for regular Petri nets
	2.3.2 Operational semantics of regular Petri nets

	2.4 Reset/inhibitor Petri nets
	2.4.1 A metamodel for reset/inhibitor Petri nets
	2.4.2 Behaviour for reset/inhibitor Petri nets

	2.5 Examples of PN models

	3 Formal semantics of multilevel DSMLs
	3.1 Maude as a backend tool for MultEcore
	3.2 A Maude semantics of multilevel hierarchies
	3.3 Box-free MCMTs in Maude
	3.4 Meta-programming for MCMTs boxes

	4 Execution and analysis of a Petri net model
	4.1 Execution using Maude
	4.2 Reachability analysis
	4.3 System abstraction for unbounded analysis

	5 Related work
	6 Conclusions and future work
	A Petri nets multilevel hierarchy
	References

