
Formal Modelling and Incremental Verification
of the MQTT IoT Protocol

Alejandro Rodŕıguez, Lars Michael Kristensen and Adrian Rutle

Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, Bergen, Norway

{arte,lmkr,aru}@hvl.no

Abstract. Machine to Machine (M2M) communication and Internet of
Things (IoT) are becoming still more pervasive with the increase of com-
municating devices used in cyber-physical environments. A prominent
approach to communication between distributed devices in highly dy-
namic IoT environments is the use of publish-subscribe protocols such
as the Message Queuing Telemetry Transport (MQTT) protocol. MQTT
is designed to be light-weight while still being resilient to connectivity
loss and component failures. We have developed a Coloured Petri Net
model of the MQTT protocol logic using CPN Tools. The model covers
all three quality of service levels provided by MQTT (at most once, at
least once, and exactly once). For the verification of the protocol model,
we show how an incremental model checking approach can be used to
reduce the effect of the state explosion problem. This is done by exploit-
ing that the MQTT protocol operates in phases comprised of connect,
subscribe, publish, unsubscribe, and disconnect.

1 Introduction

Publish-subscribe messaging systems support data-centric communication and
have been widely used in enterprise networks and applications. A main reason for
this is that a software system architecture based on publish-subscribe messag-
ing provides better support for scalability and adaptability than the traditional
client-server architecture used in distributed systems. The interaction and ex-
change of messages between clients based on the publish-subscribe paradigm are
based on middleware usually referred to as a broker (or a bus) that manages
topics. The broker provides space decoupling [9] allowing a client acting as a
publisher on a given topic to send messages to other clients acting as subscribers
to the topic without the need to know the identity of the receiving clients. The
broker also provides synchronisation decoupling in that clients can exchange mes-
sages without being executing at the same time. Furthermore, the processing in
the broker can be parallelized and handled using event-driven techniques.

The loose coupling and support for asynchronous point-to-multipoint mes-
saging, make the publish-subscribe paradigm attractive also in the context of
Internet of Things (IoT) which has experienced significant growth in applica-
tions and adoptability in recent years [17]. The IoT paradigm blends the virtual

2 A. Rodriguez et. al.:

and the physical worlds by bringing different concepts and technical components
together: pervasive networks, miniaturisation of devices, mobile communication,
and new ecosystems [6]. Moreover, the implementation of a connected product
typically requires the combination of multiple software and hardware compo-
nents distributed in a multi-layer stack of IoT technologies.

MQTT [3] is a publish-subscribe messaging protocol for IoT designed with
the aim of being light-weight and and easy to implement. These characteristics
make it a suitable candidate for constrained environments such as Machine-
to-Machine communication (M2M) and IoT contexts where a small memory
footprint is required and where network bandwidth is often a scarce resource.
Even though MQTT has been designed to be easy to implement, it still contains
relatively complex protocol logic for handling connections, subscriptions, and the
various quality of service levels related to message delivery. Furthermore, MQTT
is expected to play a key role in future IoT applications and will be implemented
for a wide range of platforms and in a broad range of programming languages
making interoperability a key issue. This, combined with the fact that MQTT
is only backed by an (ambiguous) natural language specification, motivated us
to develop a formal and executable specification of the MQTT protocol.

We have used Coloured Petri Nets (CPNs) [12] for the modelling and veri-
fication of the MQTT specification. The main reason is that CPNs have been
successfully applied in earlier work to build formal specifications of communica-
tion protocols [8], data networks [5], and embedded systems [1]. To ensure the
proper operations of the constructed CPN model, we have validated the CPN
model using simulation and verified an elaborate set of behavioural properties
of the constructed model using model checking and state space exploration. In
the course of our work on the MQTT specification [3] and the development of
the CPN model, we have identified a number of issues related in particular to
the implementation of the quality of service levels. These issues are a potential
source of interoperability problems between implementations. For the construc-
tion of the model we have applied some general modelling patterns for CPN
models of publish-subscribe protocols. Compared to earlier work on modelling
and verification of publish-subscribe protocols [18, 4, 10] (which we discuss in
more details towards the end of this paper) our work specifically targets MQTT,
and we consider a more extensive set of behavioural properties.

The rest of this paper is organised as follows. In Sect. 2 we present the
MQTT protocol context and give a high-level overview of the constructed CPN
model. Section 3 details selected parts of the CPN model of the MQTT pro-
tocol. In Sect. 4 we present our experimental results on using simulation and
model checking to validate and verify central properties of MQTT and the CPN
model. Finally, in Sect. 5 we sum up the conclusions, discuss related work, and
outlines directions for future work. Due to space limitations, we cannot present
the complete CPN model of the MQTT protocol. The constructed CPN model
is available via [15]. The reader is assumed to be familiar with the basic concepts
of Petri Nets and High-level Petri Nets [12].

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 3

2 MQTT Protocol and CPN Model Overview

MQTT [3] runs over the TCP/IP protocol or other transport protocols that
provide ordered, lossless and bidirectional connections. MQTT applies topic-
based filtering of messages with a topic being part of each published message.
An MQTT client can subscribe to a topic to receive messages, publish on a
topic, and clients can subscribe to as many topics as they are interested in. As
described in [14], an MQTT client can operate as a publisher or subscribe and we
use the term client to generally refer to a publisher or a subscriber. The MQTT
broker [14] is the core of any publish/subscribe protocol and is responsible for
keeping track of subscriptions, receiving and filtering messages, deciding to which
clients they will be dispatched, and sending them to all subscribed clients. There
are no restrictions in terms of hardware to run as an MQTT client, and any
device equipped with an MQTT library and connected to an MQTT broker can
operate as a client.

2.1 Modelling Roles and Messages

Figure 1 shows the top-level module of the CPN MQTT model which consists
of two substitution transitions (drawn as rectangles with double-lined borders)
representing the Clients and the Broker roles of MQTT. Substitution transitions
constitute the basic syntactical structuring mechanism of CPNs and each of the
substitution transitions has an associated module that models the detailed be-
haviour of the clients and the broker, respectively. The name of the (sub)module
associated with a substitution transition is written in the rectangular tag posi-
tioned next to the transition.

The complete CPN model of the MQTT protocol consists of 24 modules
organised into six hierarchical levels. We have constructed a parametric CPN
model which makes it easy to change the number of clients and topics without
making changes to the net-structure. This makes it possible to investigate dif-

CtoB

BrokerxMessages

[]

BtoC

ClientxMessages

initMsgQueue()

Broker

BrokerBroker

Clients

ClientClient

1 1`[]1 1`[(client(1),[]),(client(2),[])]

Fig. 1. The top-level module of the MQTT CPN model.

4 A. Rodriguez et. al.:

ferent configuration of MQTT and it is a main benefit provided by CPNs in
comparison to ordinary Petri Nets.

The two substitution transitions in Fig. 1 are connected via directed arcs
to the two places CtoB and BtoC. The clients and the broker interact by pro-
ducing and consuming tokens on the places. Figure 2 shows the central data
type definitions used for the colour sets of the places CtoB and BtoC and the
modelling of clients and messages. The colour sets QoS is used for modelling the
three quality of service levels supported by MQTT (see below), and the colour
set PID is used for modelling the packet identifiers which plays a central role in
the MQTT protocol logic. We have abstracted from the actual payload of the
published messages. The reason for this is that the message transport structure
and the protocol logic of MQTT is agnostic to the payload contained, i.e., the
actual content that will be sent in the messages. For similar reasons, we also
abstract from the hierarchical structuring of topics.

val T = 5; (* number of topics *)
val C = 2; (* number of clients *)

colset Client = index client with 1..C;
colset Topic = index topic with 1..T;
colset QoS = index QoS with 0..2; (* quality of service *)
colset PID = INT; (* packet identifiers *)

colset TopicxPID = product Topic * PID;
colset TopicxQoSxPID = product Topic * QoS * PID;

colset Message = union CONNECT + CONNACK +
SUBSCRIBE : TopicxQoSxPID + UNSUBSCRIBE : TopicxPID +
SUBACK : TopicxQoSxPID + UNSUBACK : TopicxPID
PUBLISH : TopicxQoSxPID +
PUBACK : TopicxPID + PUBREC : TopicxPID +
PUBREL : TopicxPID + PUBCOMP : TopicxPID +
DISCONNECT ;

colset Messages = list Message ;

colset ClientxMessage = product Client * Message ;
colset BrokerxMessages = list ClientxMessage ;

colset ClientxMessageQueue = product Client * Messages ;
colset ClientxMessages = list ClientxMessageQueue ;

Fig. 2. Client and message colour set definitions

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 5

The places CtoB and BtoC are designed to behave as queues. The queue mech-
anism offers some advantages that the MQTT specification implicitly indicates.
The purpose of this is to ensure the ordered message distribution as assumed
from the transport service on top of which MQTT operates. Even so, the CtoB
and BtoC places are slightly different; while CtoB is modelled as a single queue
that the broker manages to consume messages, BtoC is designed to maintain an
incoming queue of messages for each client. This construction assures that all
clients will have their own queue, individually respecting the ordered reception of
messages. The function initMsgQueue() initialises the queues according to the
number of clients specified by the symbolic constant C. The BrokerxMessages
colour set for the CtoB place used at the bottom of Fig. 2 consists of a list of
ClientxMessage which are pairs of Client and Messages.

We represent all the messages that the clients and the broker can use by
means of the Message colour set. We use the terms packet and message in-
distinguishably when we refer to control packets. The control information used
depends on the messages considered. As an example, a Connect message (packet)
does not contain control information, but a Publish message requires a specific
Topic, QoS, and PID. The Topic and QoS colour sets are both indexed types
containing values (topic(1), topic(2) ... topic(T) depending on the constant
T, and QoS(0), QoS(1) and QoS(2), respectively. The ClientxMessages colour
set for the BtoC place encapsulates all the queues (each one declared as a pair
of Client and Messages in the ClientxMessageQueue colour set) in one single
queue. This modelling pattern allows us to deal with the distribution of multiple
messages in a single step in the broker side which in turn simplifies the modelling
of the broker and reduces the number of reachable states of the model.

2.2 Quality of Service
The MQTT protocol delivers application messages according to the three Qual-
ity of Service (QoS) levels defined in [3]. The QoS levels are motivated by the
different needs that IoT applications may have in terms of reliable delivery of
messages. It should be noted that even if MQTT has been designed to oper-
ate over a transport service with lossless and ordered delivery, then message
reliability still must be addressed as logical transport connections may be lost.

The delivery protocol is symmetric, and the clients and the broker can each
take the role of either a sender or a receiver. The delivery protocol is concerned
solely with the delivery of an application message from a single sender to a single
receiver. When the broker is delivering an application message to more than one
client, each client is treated independently. The QoS level used to deliver an
outbound message from the broker could differ from the QoS level designated
in the inbound message. Therefore, we need to distinguish two different parts of
delivering a message: a client that publishes to the broker and the broker that
forwards the message to the subscribing clients. The three MQTT QoS levels for
message delivery are:
At most once: (QoS level 0): The message is delivered according to the ca-

pabilities of the underlying network. No response is sent by the receiver and

6 A. Rodriguez et. al.:

no retry is performed by the sender. The message arrives at the receiver
either once or not at all. An application of this QoS level is in environ-
ments where sensors are constantly sending data and it does not matter if
an individual reading is lost as the next one will be published soon after.

At least once (QoS level 1): Where messages are assured to arrive, but du-
plicates can occur. It fits adequately for situations where delivery assurance
is required but duplication will not cause inconsistencies. An application
of this are idempotent operations on actuators, such as closing a valve or
turning on a motor.

Exactly once (QoS level 2): Where messages are assured to arrive exactly
once. This is for use when neither loss nor duplication of messages are ac-
ceptable. This level could be used, for example, with billing systems where
duplicate or lost messages could lead to incorrect charges being applied.

When a client subscribes to a specific topic with a certain QoS level it means
that the client is determining the maximum QoS that can be expected for that
topic. When the broker transfers the message to a subscribing client it uses
the QoS of the subscription made by the client. Hence QoS guarantees can get
downgraded for a particular receiving client if subscribed with a lower QoS. This
means that if a receiver is subscribed to a topic with a QoS level 0, no matter if
a sender publishes in this topic with a QoS level 2, then the receiver will proceed
with its QoS level 0.

3 Modelling the Protocol Roles and their Interaction

We now consider the different phases and the client-broker interaction in the
MQTT protocol, and show how we have modelled the MQTT protocol logic
using CPNs. MQTT defines five main operations: connect, subscribe, publish,
unsubscribe, and disconnect. Such operations, except the connect which must be
the first one for the clients, are independent of each other and can be triggered
in parallel by either the clients or the broker. The model is organized following
a modelling pattern that ensures modularity and therefore, encapsulation of the
protocol logic and behaviour of such operations. This offers advantages both for
readability and understandability of the model and also, for making easier to
detect and fix errors during the incremental verification.

3.1 Interaction Overview

In order to show how the clients and the broker interact, we describe the different
actions that clients may carry out by considering an example. Figure 3 shows a
sequence diagram for a scenario where two clients connect, perform subscribe,
publish and unsubscribe, and finally disconnect from the broker. The numbers on
each step of the communication define the interaction of the protocol as follows:

1. Client 1 and Client 2 request a connection to the Broker.

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 7

Client 1 Broker

1 - CONNECT

2 - CONNACK

Client 2

1 - CONNECT

2 - CONNACK

3 - SUBSCRIBE(topic(1), QoS(1))

3 - SUBACK (topic(1))

4 - PUBLISH (topic(1), QoS(1))

5 - PUBLISH (topic(1), QoS(1))
4 - PUBACK(topic(1),QoS(1))

6 - PUBACK(topic(1),QoS(1))

7 - UNSUBSCRIBE (topic(1))

7 - UNSBACK(topic(1))

8 - DISCONNECT
8 - DISCONNECT

Fig. 3. Message sequence diagram illustrating the MQTT phases.

2. The Broker sends back a connection acknowledgement to confirm the estab-
lishment of the connection.

3. Client 2 subscribes to topic 1 with a QoS level 1, and the Broker confirms
the subscription with a subscribe acknowledgement message.

4. Client 1 publishes on topic 1 with a QoS level 1. The Broker responds with a
corresponding publish acknowledgement.

5. The Broker transmits the publish message to Client 2 which is subscribed to
the topic.

6. Client 2 gets the published message, and sends a publish acknowledgement
back as a confirmation to the Broker that it has received the message.

7. Client 2 unsubscribes to topic 1, and the Broker responds with an unsubscribe
acknowledgement.

8. Client 1 and Client 2 disconnect.

3.2 Client and Broker State Modelling

The colour sets defined for modelling the client state are shown in Fig. 4. The
place Clients (top-left place in Fig. 5) uses a token for each client to store their
respective state during the communication. This is a modelling pattern that al-
lows not only to parameterize the model so we can change the number of clients
without modifying the structure, but also to maintain all the clients indepen-
dently in only one place and with a proper data structure that encapsulates
all the information required. The states of the clients are represented by the
ClientxState colour set which is a product of Client and ClientState. The
record colour set ClientState is used to represent the state of a client which
consists of a list of TopicxQoS, a State, and a PID. Using this, a client stores the
topics it is subscribed to, and the quality of service level of each subscription.
The State colour set is an enumeration type containing the values READY (for

8 A. Rodriguez et. al.:

colset State = with READY | DISC | CON | WAIT;

colset TopicxQoS = product Topic * QoS;
colset ListTopicxQoS = list TopicxQoS ;

colset ClientState = record topics : ListTopicxQoS *
state : State *
pid : PID;

colset ClientxState = product Client * ClientState ;

Fig. 4. Colour set definitions used for modelling client state.

the initial state), WAIT (when the client is waiting to be connected), CON (when
the client is connected), and DISC (for when the client has disconnected).

Below we present selected parts of the model by first presenting a high-level
view of the clients and broker sides, and then illustrating how the model captures
the execution scenario described in Section 3.1 where two clients connects, one
subscribes to a topic, and the other client publishes on this topic. The unsub-
scribe and the disconnection phases are not detailed due to space limitations.

ClientsIn/Out

ClientxState

In/Out

CtoBOut

BrokerxMessages

OutBtoCIn

ClientxMessages

In

PUBLISH

PUBLISHPUBLISH

SUBSCRIBE

SUBSCRIBESUBSCRIBE

UNSUBSCRIBE

UNSUBSCRIBEUNSUBSCRIBE

DISCONNECT

DISCONNECTDISCONNECT

CONNECT

CONNECTCONNECT

2

1`(client(1),{topics=[],state=READY,p
id=0})++
1`(client(2),{topics=[],state=READY,p
id=0})

1 1`[]1 1`[(client(1),[]),(client(2),[])]

Fig. 5. ClientProcessing submodule.

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 9

3.3 Client Modelling

The ClientProcessing submodule in Fig. 5 models all the operations that a client
can carry out. Clients can behave as senders and receivers, and the five substitu-
tion transitions CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE and DISCONNECT
has been constructed to capture both behaviours.

The socket place Clients stores the information of all the clients that are
created at the beginning of the execution of the model. In this scenario there
are two clients, and the value of the tokens representing the state of the two
clients is provided in the green rectangle (the marking of the place) next to the
Clients place. The BtoC and CtoB port places are associated with the socket
places already shown in Fig. 2.

3.4 Broker Modelling

We have modelled the broker similarly as we have done for clients. This can be
seen from Fig. 6 which shows the BrokerProcessing submodule. The Connected-
Clients place keeps the information of all clients as perceived by the broker. This
place is designed as a central storage, and it is used by the broker to distribute
the messages over the network. The broker behaviour is different from that of
the clients, since it will have to manage all the requests and generate responses
for several clients at the same time.

CtoBIn

BrokerxMessages

Connected
Clients

Out
ClientsxState

BtoCOut

ClientxMessages

Process
DISCONNECT

ProcessDISCONNECTProcessDISCONNECT

Process
UNSUBSCRIBE

ProcessUNSUBSCRIBEProcessUNSUBSCRIBE

Process
CONNECT

ProcessCONNECTProcessCONNECT

Process
PUBLISH

ProcessPUBLISHProcessPUBLISH

Process
SUBSCRIBE

ProcessSUBSCRIBEProcessSUBSCRIBE

In

Out

Out1 1`[]

1 1`[]

1

1`[(client(1),[]),(client(2),[])]

Fig. 6. The BrokerProcessing module.

10 A. Rodriguez et. al.:

3.5 Connection Phase

The first step for a client to be part of the message exchange is to connect to the
broker. A client will send a CONNECT request, and the broker will respond with a
CONNACK message to complete the connection establishment. Figure 7 shows the
CONNECT submodule in a marking where client(1) has sent a CONNECT request
and it is waiting (state = WAIT) for the broker acknowledgement processing to
finish such that the connection state can be set to CON.

CtoBOut

BrokerxMessages

Out

Clients

In/Out

ClientxState

BtoCIn

ClientxMessages

Send
CONNECT

[isClientState (cs,READY),
 nLR outmsgs]

Receive
CONNACK

[isClientState (cs,WAIT),
 hasCONNACK (cs,inmsgs)]

sendMsg outmsgs (cs,CONNECT)

setClientState (cs,WAIT)

cs

outmsgsinmsgs

setClientState (cs,CON)

cs

recvMsg(cs,inmsgs)

In

In/Out

1 1`[(client(1),CONNECT)]

2

1`(client(1),{topics=[],state=WAIT,pi
d=0})++
1`(client(2),{topics=[],state=READY,p
id=0})

1 1`[(client(1),[]),(client(2),[])]

outmsgs = []

cs = (client(1),{topics=[],state=READY,pid=0})

Fig. 7. CONNECT module after the sendCONNECT occurrence.

The broker will receive the CONNECT request. The broker will register the
client in the place ConnectedClients and send back the acknowledgement. Figure 8
shows the situation where client(1) is connected in the broker side and the
CONNACK response has been sent back to the client. The function connectClient()
used on the arc from the ProcessCONNECT transition to the ConnectedClients
place will record the connected client on the broker side. The last step of the
connection establishment will occur again in the clients side, where the transi-
tion ReceiveCONNACK (in Fig. 7) will be enabled, meaning that the confirmation
for the connection of client(1) can proceed.

3.6 Subscription Phase

Starting from the point where both clients are connected (i.e., for both clients,
the state is CON as shown at the top of Fig. 9), client(2) will send a SUBSCRIBE
request to topic(1) with QoS(1). The place PendingAcks represents a queue that
each client maintains to store the PIDs that are waiting to be acknowledged. In
this example, the message has assigned a PID = 0, and client(2) is waiting for
an acknowledgement to this subscription with a PID = 0. When a client receives
a SUBACK (subscribe acknowledgement) it will check that the packet identifier (0

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 11

Connected
Clients

In/Out

ClientsxState

BtoC Out

ClientxMessages

CtoBIn

BrokerxMessages

Process
CONNECT

[cLR boutmsgs]

connectClient(clstates,c)

bsendMsg (boutmsgs,(c,CONNACK))((c,CONNECT)::msgs)

msgs

clstates

boutmsgs

Out

In/Out

In

1
1`[(client(1),{topics=[],state=CON,pi
d=0})]

1
1`[(client(1),[CONNACK]),(client(2),[])
]

1 1`[]

Fig. 8. ProcessCONNECT module after the ProcessCONNECT occurrence.

in this case) is the same to ensure that the correct packet is being received. At
the bottom right side of the Fig. 9, the message has been sent to the broker.

We show now the situation where the SUBSCRIBE request has been processed
by the broker as represented in Fig. 10. The function brokerSubscribeUpdate()
manages the subscription process, so if the client is subscribing to a new topic,
it will be added to the client state stored in the broker. If the client is already
subscribed to this topic it will update it. In the example, one can see that
client(1) keeps the same state, but client(2) has appended this new topic
to its list. The corresponding SUBACK message has been sent to client(2) (with
the PID set to 0) to confirm the subscription. Next, client(2) will detect that
the response has arrived and it will check that the packet identifiers correspond
to each other.

Clients

In/Out
ClientxState

In/Out

CtoBOut

BrokerxMessages

OutBtoCIn

ClientxMessages

In

PendingAcks

ClientxPIDs

initQueue()

can
Subscribe

QoS

iSubscribe

Send
SUBSCRIBE

[checkClientCON(cs),
 nLR msgs, c = #1 cs,
 listpids = [],
 notSubscribed(t,cs),
 subLR (#pid (#2 cs))]

Receive
SUBACK

[hasSUBACK(cs,inmsgs),
 (#1 cs) = c]

cs

(msgs^^[(c, SUBSCRIBE(t,qos,(#pid (#2 cs))))])msgsinmsgs

clientSubTopic(cs,getMsg(cs,inmsgs),listpids)

cs

(c,listpids)

(c,listpids^^[#pid (#2 cs)])(c,rmPid (listpids,
 getMsg (cs,inmsgs)))

(c,listpids)

increasePID(cs)

qos

recvMsg (cs,inmsgs)

2

1`(client(1),{topics=[],state=CON,pid
=0})++
1`(client(2),{topics=[],state=CON,pid
=1})

1
1`[(client(2),SUBSCRIBE((topic(1),QoS
(1),0)))]

1 1`[(client(1),[]),(client(2),[])]

2
1`(client(1),[])++
1`(client(2),[0])

1 1`QoS(1)

Fig. 9. SUBSCRIBE module after the SUBSCRIBE occurrence.

12 A. Rodriguez et. al.:

Connected
Clients

In/Out

ClientsxState

CtoBIn

BrokerxMessages

BtoC Out

ClientxMessages

process
SUBSCRIBE

[isClientConnected(clstates,c),
cLR boutmsgs]

clstates

((c,SUBSCRIBE(t,qos,pid))::msgs)

msgs

bsendMsg (boutmsgs,(c,SUBACK(t,qos,pid)))

brokerSubscribeUpdate(clstates,(c,t,qos))

boutmsgs

In Out

In/Out 1
1`[(client(1),{topics=[],state=CON,pi
d=0}),(client(2),{topics=[(topic(1),Qo
S(1))],state=CON,pid=0})]

1 1`[] 1
1`[(client(1),[]),(client(2),[SUBACK((to
pic(1),QoS(1),0))])]

Fig. 10. ProcessSUBSCRIBE module after occurrence of ProcessSUBSCRIBE.

3.7 Publishing Phase

The publishing process in the considered scenario requires two steps to be com-
pleted. First a client sends a PUBLISH in a specific topic, with a specific QoS,
which is received by broker. The broker will answer back with the corresponding
acknowledgement, depending on the quality of service previously set. Second,
the broker, that stores information for all clients, will propagate the PUBLISH
sent by the client to any clients subscribing to that topic. We have modelled
the clients and broker sides using different submodules depending on the qual-
ity of service that is being applied for sending and receiving. In our example,
client(1) will publish in topic(1) with a QoS(1). This means that the broker
will acknowledge back with a PUBACK to client(1), and will create a PUBLISH
message for client(2), which is subscribed to this topic with a QoS(1). In this
case, there is no downgrading for the client(2), so the publication process will
be similar to step 1, i.e, client(2) will send back a PUBACK to the broker.

Figure 11 shows the situation in the model where client(1) has sent a
PUBLISH with a QoS(1) for the topic(1). Similar to the subscription process,
the place CtoB holds the message that the broker will receive, and the place
Publishing keeps the information (PID and topic in this case) of the packet that
needs to be acknowledged. The transition TimeOut models the behaviour for the
re-transmission of packets. Quality of service level 1 assures that the message
will be received at least once. The TimeOut transition will be enabled to re-send
the message until the client has received the acknowledgement from the broker.

The Broker module models the logic for both receiver and sender behaviours.
Figure 12 shows a marking corresponding to the state where the broker has
processed the PUBLISH request made by client(1), and it has generated both
the answer to this client and the PUBLISH message for client(2) (in this case,
only one client is subscribed to the topic). The port place BPID (Broker PID),
at top right of Fig. 12, will hold a packet identifier for each message that the
broker re-publishes to the clients. The port place Publishing keeps information

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 13

ClientsIn/Out

ClientxState

CtoB In/Out

BrokerxMessages

Publishing

ClientxListPIDxTopic

initQueue()

BtoC

In

ClientxMessages

PUBLISH_QoS_1

[checkClientCON(cs),
 nLR msgs,
 epub 1, c = #1 cs,
pubLR (#pid (#2 cs))]

receive
PUBACK

[hasPUBACK(c,inmsgs)]

TimeOut

[nLR msgs,timeout()]

cs

msgs

increasePID(cs)

(msgs^^[(#1 cs, PUBLISH(t,QoS(1), (#pid (#2 cs))))])

(#1 cs,
listpidsxtopics^^[((#pid (#2 cs)),t)])

(c, (pid,t)::listpidsxtopics)

(msgs^^[(c, PUBLISH(t,QoS(1),pid))])

msgs

precvMsg (c,inmsgs)

(c,listpidsxtopics) (c, listpidsxtopics)

(c, rmPidT
 (listpidsxtopics,
 (pgetMsg (c,inmsgs))))

(c,listpidsxtopics^^[(pid,t)])
inmsgs

In/Out

In/Out
In

2 1`(client(1),{topics=[],state=CON,pid
=1})++
1`(client(2),{topics=[(topic(1),QoS(1)
)],state=CON,pid=1})

1
1`[(client(1),PUBLISH((topic(1),QoS(1
),0)))]

2

1`(client(1),[(0,topic(1))])++
1`(client(2),[])

1

1`[(client(1),[]),(client(2),[])]

Fig. 11. PUBLISH QoS 1 module after the PUBLISH QoS 1 occurrence.

for all the clients that will acknowledge back the publish messages transmitted
by the broker. Again, a TimeOut is modelled which, in this case, creates PUBLISH
messages for all the clients subscribed to the topic in question. In the BtoC place
(bottom right of Fig. 12), one can see that both messages have been sent, one
for the original sender client(1) (PUBACK packet), and one for the only receiver
client(2) (PUBLISH packet).

BPIDIn/Out

PID

1`0

CtoBIn/Out

BrokerxMessages

BtoC Out

ClientxMessages

PublishingIn/Out

ListClientxListPIDxTopicxQoS

initQueue()

Connected
Clients

In/Out
ClientsxState

Process_QoS_1

[cLR boutmsgs]

ReceivePUBACK

TimeOut

[createPublishQoS1 listcxlptq <> [],
 nLR boutmsgs,timeout()]

(bpid + 1)

bpid

msgs

((c,PUBLISH(t,QoS(1),pid))::msgs)
bsendMsgs(boutmsgs,
 brokerDispatchPublishQos1 (bpid, clstates, c, t, pid))

brokerCreateACKWaiting(bpid, clstates, t, listcxlptq)

clstates

listcxlptq

msgs

(c,PUBACK(t,pid))::msgs

brokerUpdateACKWaiting(c,pid,listcxlptq)

listcxlptq

listcxlptq
bsendMsgs (boutmsgs,
 createPublishQoS1 listcxlptq)

boutmsgs

boutmsgs

In/Out

In/Out In/Out

In/Out Out

1 1`1

1 1`[] 1

1`[(client(1),[PUBACK((topic(1),0))]),(
client(2),[PUBLISH((topic(1),QoS(1),0)
)])]

1
1`[(client(1),[]),(client(2),[(0,topic(1),
QoS(1))])]

1
1`[(client(1),{topics=[],state=CON,pi
d=0}),(client(2),{topics=[(topic(1),Qo
S(1))],state=CON,pid=0})]

Fig. 12. Process QoS 1 module after the Process QoS 1 occurrence.

14 A. Rodriguez et. al.:

To finish the process, client(2) will notice that there has been a message
published in topic(1). Since client(2) is subscribed to this topic with QoS(1),
it must send a PUBACK acknowledgement to the broker to confirm that it has
received the published message. Figure 13 shows the Receive QoS 1 submodule
in the clients side. The transition Receive QoS 1 has been fired meaning that
client(2) has received the publish message from the broker, and has sent the
corresponding PUBACK. When the broker detects the incoming PUBACK message,
it will check if there is some confirmation pending in the Publishing place (in
Fig. 12 where client(2) is waiting for a PID = 0 in topic(1) with QoS(1).

CtoB In/Out

BrokerxMessages

In/OutBtoCIn/Out

ClientxMessages

In/Out

ClientsIn/Out

ClientxState

In/Out

Receive_QoS_1

[(c= #1 cs),LR 3 msgs,
 hasPUBLISH (QoS(1)) (cs,inmsgs)]

msgs^^sendPUBACK (c, inmsgs)

msgs

recvMsg (cs,inmsgs)

cs

inmsgs

11`[(client(2),PUBACK((topic(1),0)))]1 1`[(client(1),[PUBACK((topic(1),0))]),(
client(2),[])]

2

1`(client(1),{topics=[],state=CON,pid
=1})++
1`(client(2),{topics=[(topic(1),QoS(1)
)],state=CON,pid=1})

Fig. 13. Receive module after the transition Receive QoS 1 occurrence

3.8 Findings

In the course of constructing the CPN model based on the informal MQTT
specification, we encountered several parts that were vaguely defined and which
could lead developers to obtain different implementations. The most significant
issues are detailed below.

– There is a gap in the specification related to the MQTT protocol being
described to run over TCP/IP, or other transport protocols that provide
ordered, lossless and bidirectional connections. The QoS level 0 description
establishes that message loss can occur, but the specification is not clear as
to whether this is related to termination of TCP connections and/or clients
connecting and disconnecting from the broker.

– It is specified that the receiver (assuming the broker role) is not required to
complete delivery of the application message before sending the PUBACK
(for QoS1) or PUBREC or PUBCOMP (for QoS2) and the decision of han-
dling this is up to the implementer. For instance, in the case of QoS level
2, the specification provides two alternatives with respect to forward the

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 15

publish request to the subscribers: 1) The broker will forward the messages
when it receives the PUBLISH from the original sender; or 2) The broker will
forward the messages after the reception of the PUBREL from the original
sender. Even it is assured that either choice does not modify the behaviour
of the QoS level 2, this could lead to different implementation decisions and
therefore consequent interoperability problems.

– The documentation specifies that when the original sender receives the PUB-
ACK packet (with a QoS level 1), ownership of the application message is
transferred to the receiver. It is unclear how to determine that the original
sender has received the PUBACK packet. The same applies for QoS level 2
and the PUBREC packet.

4 Model Validation and Verification
During development of the MQTT protocol model we used single-step and auto-
matic simulation to test the proper operation of the model. To perform a more
exhaustive validation of the model, we have conducted state space exploration
of the model and verified a number of behavioural properties.

We have conducted the verification of properties using an incremental ap-
proach consisting of three steps. In the first step we include only the parts related
to clients connecting and disconnecting. In the second step we add subscribe and
unsubscribe, and finally in the third step we add data exchange considering the
three quality of service levels in turn. At each step, we include verification of ad-
ditional properties. The main motivation underlying this incremental approach
is to be able to control the effect of the state explosion problem. Errors in the
model will often manifest themselves in small configurations and leading to a
very large state space. Hence, by incrementally adding the protocol features,
we can mitigate the effect of this phenomenon. We identified several modelling
errors in the course of conducting this incremental model validation based on
the phases of the MQTT protocol.

In addition, we have developed a mechanism to be able to explore different
scenarios and check the behavioural properties against them fully automatically.
This has been done by providing the model with a set of parameterized options,
which we can easily change. This feature allows us to first modify add or re-
move new configurations, and secondly to run them automatically. For each new
modification in the parameters, we always run the six incremental executions
and check the behavioural properties. Among others, one can quickly change
the number of clients, the roles that such clients can perform (either subscriber,
publisher, or both), switch between acyclic or cyclic version (where reconnection
of clients is allowed) or enable/disable the possibility to retransmit packets (by
means of timeouts).

To obtain a finite state space, we have to limit the number of clients and
topics, and also bound the packet identifiers. It can be observed that there is
no interaction between clients and brokers across topics as the protocol treats
each topic in isolation. Executing the protocol with multiple topics is equiv-
alent to running multiple instances of the protocol in parallel. We therefore

16 A. Rodriguez et. al.:

only consider a single topic for the model validation. Initially, we consider two
clients. The packet identifiers are incremented throughput the execution of the
different phases of the protocol (connect, subscribe, data exchange, unsubscribe,
and disconnect). This means that we cannot use a single global bound on the
packet identifiers as a client could reach this bound, e.g., already during the
publish phase and hence the global bound would prevent (block) a subsequent
unsubscribe to take place. We therefore introduce a local upper bound on packet
identifiers for each phase. This local bound expresses that the given phase may
use packet identifiers up to this local bound. Note that the use of bounds does
not guarantee that the client uses packet identifiers up to bound. It is the guard
on the transitions sending packets from the clients that ensures that these lo-
cal bounds are enforced. Finally, we enforce an upper bound on the number of
messages that can be in the message queues on the places CtoB and BtoC.

Below we describe each step of the model validation and the behavioural
properties verified. The properties verified in each step include the properties
from the previous step. We summarise the experimental results at the end. For
the actual checking of properties, we have used the state and action-oriented
variant of CTL supported by the ASK-CTL library of CPN Tools.

Step 1 – Connect and Disconnect. In the first step, we consider only the
part of the model related to clients connecting and disconnecting to the broker.
We consider the following behavioural properties:
S1-P1-ConsistentConnect The clients and the broker have a consistent view

of the connection state. This means that if the clients side is in a connect
state, then also the broker has the client recorded as connected.

S1-P2-ClientsCanConnect For each client, there exists a reachable state in
which the client is connected to the broker.

S1-P3-ConsistentTermination In each terminal state (dead marking), clients
are in a disconnect state, the broker has recorded the clients as disconnected,
no clients are recorded as subscribed on both clients and broker sides, and
there are no outstanding messages in the message buffers.

S1-P4-PossibleTermination The protocol can always be terminated, i.e., a
terminal state (dead marking) can always be reached.

The two properties S1-P3 and S1-P4 imply partial correctness of the protocol
as it states that the protocol can always be terminated, and if it terminates, then
it will be in a correct state. The state space obtained in this step is acyclic when
we do not allow reconnections. This together with S1-P3 implies the stronger
property of eventual correct termination. This is, however, more a property of
how the model has been constructed as in a real implementation there is nothing
forcing a client to disconnect.

Step 2 – Subscribe and Unsubscribe. In the second step, we add the ability
for the clients to subscribe and unsubscribe (in addition to connect and discon-
nect from step 1). For subscribe and unsubscribe we additionally consider the
following properties:

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 17

S2-P1-CanSubscribe For each of the clients, there exists states in which both
the clients and the broker sides consider the client to be subscribed.

S2-P2-ConsistentSubscription If the broker side considers the client to be
subscribed, then the clients side considers the client to be subscribed.

S2-P3-EventualSubscribed If the client sends a subscribe message, then even-
tually both the clients and the broker sides will consider the client to be
subscribed.

S2-P4-CanUnsubscribe For each client there exists executions in which the
client sends an unsubscribe message.

S2-P5-EventualUnsubscribed If the client sends an unsubscribe message,
then eventually both the clients and the broker sides considers the client to
be unsubscribed.

It should be noted that for property S2-P2, the antecedent of the implication
deliberately refers to the broker side. This is because the broker side unsubscribes
the client upon reception of the unsubscribe message, whereas the client side does
not remove the topic from the set of subscribed topics until the subscribe ac-
knowledgement message is received from the broker. Hence, during unsubscribe,
we may have the situation that the broker has unsubscribed the client, but the
subscribe acknowledgement has not yet been received on the client side.

Step 3 – Publish and QoS levels. In this step we also consider publication
of data for each of the three quality of service levels. As we do not model the
concrete data contained in the messages, we use the packet identifiers attached
to the message published to identity the packets being sent and received by the
clients. In order to reduce the effect of state explosion, we verify properties for
each QoS level in isolation. To make it simpler to check properties related to
data being sent, we record for each client the packet identifiers of messages sent.
For all three service levels, we consider the following properties:

S3-P1-PublishConnect A client only publishes a message if it is in a con-
nected state.

S3-P2-CanPublish For each client there exists executions in which the client
publishes a message.

S3-P3-CanReceive For each client there exists executions in which the client
receives a message.

S3-P4-Publish Any data (packet identifiers) received on the client side must
also have been sent on the client side.

S3-P5-ReceiveSubscribed A client only receives data if it is subscribed to
the topic, i.e., the client side considers the client to be subscribed.

It should be noted that it is possible for a client to publish to a topic without
being subscribed. The only requirement is that the client is connected to the bro-
ker. What data can correctly be received depends on the quality of service level
considered. We therefore have one of the following three properties depending
on the quality of service considered.

18 A. Rodriguez et. al.:

S3-P6-Publish-QoS0 The data (packet identifiers) received by the subscribing
clients must be a subset of the data (packet identifiers) sent by the clients.

S3-P7-Publish-QoS1 The data sent on the client side must be a subset of the
multi-set of packets received by the subscribing clients.

S3-P8-Publish-QoS2 The data received by each client is identical to the
packet identifiers sent by the clients.

To check the above properties related to data received, we accumulate the
packet identifiers received such that they can be compared to the packet identi-
fiers sent. To simplify the verification of data received, we force (using priorities)
both clients to be subscribed before data exchange takes places since otherwise
the data that can be received depends on the time at which the clients were
subscribed and unsubscribed.

Table 1 summarises the validation statistics where each configuration (sce-
nario) is represented by a row comprised of Clients, Roles and Version. We report
the size of the state space (number of states / number of arcs) and the number
of dead markings (written below the state space size). We do not show the dead
markings for the cyclic configurations as they are always 0. The columns S3.1,
S3.2 and S3.3 correspond to the results considering QoS level 0, QoS level 1
and QoS level 2, respectively. Cells containing a hyphen represent configurations
where the state space exploration and model checking did not complete within
12 hours which we used as a cut-off point.

Table 1. Summary of configurations and experimental results for model validation

No

Clients
Roles Version

State space (states/arcs)
Number of dead markings

Step 1 Step 2 Step 3
S3.1 S3.2 S3.3

2

1 sub / 1 pub Acyclic
35/48

1
258/480

4
622/1074

21
1312/2616

21
3234/6394

21

2 sub-pub 35/48
1

1849/4120
16

4282/8840
70

11462/23934
70

43791/85682
76

1 sub / 1 pub Cyclic 24/38 271/547 1149/2265 2376/5045 5996/12267
2 sub-pub 24/38 2954/6798 8138/17714 20362/43572 79913/159254

3

2 sub / 1 pub Acyclic
163/292

1
9529/25408

16
31765/76848

165
103176/262254

165 -

1 sub / 2 pub 163/292
1

1262/2862
4

10360/21604
90

46721/120321
90 -

2 sub / 1 pub Cyclic 84/175 12650/35875 87450/235887 254095/679920 -
1 sub / 2 pub 84/175 1057/2662 23817/59342 101794/279871 -

5 Conclusions and Related Work

We have presented a formal CPN model based on the most recent specification of
the MQTT protocol (version 3.1.1 [3]). The constructed CPN model represents a
formal and executable specification of the MQTT protocol. While performing an

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 19

exhaustive review of the MQTT specification to develop the model, we found sev-
eral issues that might lead to not interoperable implementations. Consequently,
this may add extra complexity for interoperability in the heterogeneous ecosys-
tem that surrounds the application of a protocol such as MQTT.

The model has been built using a set of general CPN modelling patterns
ensuring modular organisation of the protocol roles and protocol processing logic.
Furthermore, we incorporated parameterization that makes it easy to change,
among others, the number of clients and topics without having to make changes
in the CPN model structure. In addition, we have applied modelling patterns
related to the input and output message queues of the clients (publishers and
subscribers) and brokers. These modelling patterns apply generally for modelling
distributed systems that include one-to-one and one-to-many communication.

For the validation of the model, we have conducted simulation and state
space exploration in order to verify an extensive list of behavioural properties
and thereby validate the correctness of the model. In particular, our modelling
approach makes it possible to apply an incremental verification technique where
the functionality of the protocol is gradually introduced and properties are veri-
fied in each incremental step. A main advantage of the modelling patterns used
for communication and message queues is that they avoid intermediate states
and hence contributes to making state space exploration feasible.

There exists previous work on modelling and validation of the MQTT pro-
tocol. In [11], the authors uses the UPPAAL SMC model checker [7] to evaluate
different quantitative and qualitative (safety, liveness and reachability) proper-
ties against a formal model of the MQTT protocol defined with probabilistic
timed automata. Compared to their work, we have verified a larger set of be-
havioural properties using the incremental approach adding more operations in
each step. In [13], tests are conducted over three industrial implementations of
MQTT against a subset of the requirements specified in the MQTT version 3.1.1
standard using the TTCN-3 test specification language. In comparison to our
work, test-based approaches do not cover all the possible executions but only ran-
domly generated scenarios. With the exploration of state spaces, we considered
all the possible cases. In [2], the authors first define a formal model of MQTT
based on timed message-passing process algebra, and they conduct analysis of
the three QoS levels. In contrast, our work is not limited to the publishing/sub-
scribing process, but considers all operations of the MQTT specification.

We are planning to extend the features supported by the model in order to
be able to simulate more sophisticated scenarios. For instance, we will allow the
model to deal with persistence of data, so clients can receive the messages on
reconnections lost suddenly in the middle of some operation. Furthermore, we
plan to improve the mechanism to simulate loss of packets as an extension of the
timeout system already implemented. In addition to aiding in the development
of compatible MQTT implementations, the CPN MQTT model may also be used
as basis for testing of MQTT implementations. As part of future work, we plan
to explore model-based testing of MQTT protocol implementations following the
approach presented in [16].

20 A. Rodriguez et. al.:

References

1. M. A. Adamski, A. Karatkevich, and M. Wegrzyn. Design of embedded control
systems, volume 267. Springer, 2005.

2. B. Aziz. A formal model and analysis of an IoT protocol. Ad Hoc Networks,
36:49–57, 2016.

3. A. Banks and R. Gupta. MQTT Version 3.1.1. OASIS standard, 29, 2014.
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

4. L. Baresi, C. Ghezzi, and L. Mottola. On accurate automatic verification of publish-
subscribe architectures. In Proceedings of the 29th international conference on
Software Engineering, pages 199–208. IEEE Computer Society, 2007.

5. J. Billington and M. Diaz. Application of Petri nets to Communication Networks:
Advances in Petri nets, volume 1605. Springer Science & Business Media, 1999.

6. S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang. A vision of IoT: Applications,
challenges, and opportunities with china perspective. IEEE Internet of Things
journal, 1(4):349–359, 2014.

7. A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen. Uppaal
SMC tutorial. International Journal on Software Tools for Technology Transfer,
17(4):397–415, Aug 2015.

8. J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri
Nets, Advances in Petri Nets, volume 3018 of Lecture Notes in Computer Science.
Springer, 2004.

9. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM computing surveys (CSUR), 35(2):114–131, 2003.

10. D. Garlan, S. Khersonsky, and J. S. Kim. Model checking publish-subscribe sys-
tems. In Intl. SPIN Workshop on Model Checking of Software, pages 166–180.
Springer, 2003.

11. M. Houimli, L. Kahloul, and S. Benaoun. Formal specification, verification and
evaluation of the MQTT protocol in the Internet of Things. In Mathematics and
Information Technology, pages 214–221. IEEE, 2017.

12. K. Jensen and L. Kristensen. Coloured Petri Nets: A Graphical Language for
Modelling and Validation of Concurrent Systems. Communications of the ACM,
58(6):61–70, 2015.

13. K. Mladenov. Formal verification of the implementation of the MQTT protocol in
IoT devices. Master thesis, University of Amsterdam, 2017.

14. MQTT essentials part 3: Client, broker and connection establishment.
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe.

15. A. Rodriguez, L. M. Kristensen, and A. Rutle. Complete CPN model of the MQTT
Protocol. via Dropbox. http://www.goo.gl/6FPVUq.

16. R. Wang, L. Kristensen, H. Meling, and V. Stolz. Application of Model-based
Testing on a Quorum-based Distributed Storage. In Proc. of PNSE’17, volume
1846 of CEUR Workshop Proceedings, pages 177–196, 2017.

17. F. Wortmann and K. Flüchter. Internet of things. Business & Information Systems
Engineering, 57(3):221–224, 2015.

18. L. Zanolin, C. Ghezzi, and L. Baresi. An approach to model and validate publish/-
subscribe architectures. In Proc. of the SAVCBS, volume 3, pages 35–41, 2003.

