®

Check for
updates

Verification of the MQTT IoT Protocol
Using Property-Specific CTL Sweep-Line
Algorithms

Alejandro Rodriguez®™), Lars Michael Kristensen, and Adrian Rutle

Department of Computer Science, Electrical Engineering, and Mathematical Sciences,
Western Norway University of Applied Sciences, Bergen, Norway
{arte,lmkr,aru}@hvl.no

Abstract. MQTT is a publish-subscribe communication protocol being
increasingly used for implementing internet-of-things (IoT) applications.
In earlier work we have developed a formal and executable model of the
MQTT protocol using Coloured Petri Nets (CPNs) and performed an ini-
tial verification of behavioural properties. The contribution of this paper
is to investigate the use of the sweep-line method for verification of the
MQTT CPN model in order to alleviate the effect of the state explosion
problem. We formulate the behavioural properties using Computation
Tree Logic (CTL) and show how to formulate a progress measure for the
sweep-line method based on the main phases of the MQTT protocol. To
perform the verification of properties, we provide some property-specific
CTL model checking algorithms compatible with the sweep-line method.

Keywords: Coloured Petri Nets - Modelling - Verification -
Communication protocols - Internet of Things

1 Introduction

The development of distributed software systems is challenging, and one of
the main approaches to tackle the challenges is to build an executable model
of the system prior to implementation and deployment. Coloured Petri Nets
(CPNs) [13] is a formal modelling formalism convenient for specifying complex
concurrent and distributed systems. CPN Tools [9,15] is a software tool that
supports the construction, simulation (execution), state space analysis, and per-
formance analysis of CPN models. One of the key functionalities of CPN Tools
is the ability to perform model checking [1] of the modelled system. This means
that one can generate the state space (the set of reachable states) of a system
in order to verify key behavioural properties. Temporal logics [23] such as Com-
putation Tree Logic (CTL) and Linear Temporal Logic (LTL) are widely used
to express behavioural properties of systems.

MQTT [2] is a publish-subscribe messaging protocol for IoT suited for
constrained application domains such as Machine-to-Machine communication

© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 165-183, 2021.
https://doi.org/10.1007/978-3-662-63079-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-63079-2_8&domain=pdf
https://doi.org/10.1007/978-3-662-63079-2_8

166 A. Rodriguez et al.

(M2M) and IoT contexts. MQTT is designed with the aim of being light-weight
and easy to implement. In earlier work [19], we have developed a formal and
executable specification of MQTT motivated by the fact that until now, the
protocol has only been specified using an (ambiguous) natural language specifica-
tion. MQTT contains relatively complex protocol logic for handling connections,
subscriptions, and quality of service levels related to message delivery.

Our initial verification experiments were conducted using ordinary full state
spaces and clearly highlighted the presence of the state explosion problem [8,22].
This was caused by the exponential growth in the number of reachable states of
the system with respect to the number of clients, packets, and topics. A large
part of the model checking research has aimed at developing techniques for allevi-
ating this inherent complexity problem. This includes several different families of
reduction methods such as partial-order reduction methods [7] that reduce the
number of interleaving execution considered, and hash compaction [21] which
provides a compact representation of states with a small probability of not cov-
ering the complete state space. Since the amount of memory is often the lim-
iting factor in model checking, we focus on the family of methods that combat
state explosion by deleting states from memory during state space exploration.
Specifically, we consider the sweep-line method [12] which is based on the idea
of exploiting a notion of progress exhibited by many systems. We focus on CTL
because CPN Tools implements a CTL-based temporal logic called ASK-CTL [3]
which enables queries taking into account both state and event information. Fur-
thermore, CTL is able to capture the behavioural properties of interest for the
MQTT protocol.

The contribution of this paper is twofold: (1) the implementation of the
sweep-line method using the Standard ML (SML) language together with the
ability of performing model checking of certain behavioural properties specified
using tailored CTL sweep-line model checking algorithms based on [17]; and (2)
the application of sweep-line based CTL model checking to our CPN model of the
MQTT IoT protocol. It should be noted that there already exists work on LTL
model checking using the sweep-line method [10], but several of the behavioural
properties that we aim to verify for MQTT are true CTL properties, i.e., not
expressible in LTL [22,24].

The rest of this paper is organised as follows. In Sect. 2 we introduce the
sweep-line method and in Sect. 3 we provide the property-specific CTL model
checking algorithm that we employ for the verification. Section 4 gives a brief
review of the CPN model of the MQTT protocol. We describe the experiments
carried out and the results obtained in Sect. 5. Finally, in Sect. 6, we sum up the
conclusions and outline directions for future work. The reader is assumed to be
familiar with the basic concepts of CPNs and CTL model checking techniques.
This paper is based upon the workshop paper [20] and the conference paper [17].

2 The Sweep-Line State Space Exploration Method

The sweep-line method [4] is aimed at systems for which it is possible to define
a measure of progress based on the states of the system. A progress measure

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 167

maps each state of the system into a progress value and is in most cases specific
for the system under consideration. In this paper, we consider the version of
the sweep-line algorithm for monotonic progress measures. The key property of
a monotonic progress measure is that for any given state s, all states reachable
from s have a progress value which is greater than or equal to the progress value
of s. This means that a monotonic progress measure preserves the reachability
relation. Having defined a progress measure of the system makes it possible to
organise the state space into layers such that states that share the same progress
value belong to the same layer.

The basic idea of the sweep-line method is to explore the state space in a
least-progress-first order, one layer at a time, such that once all states in a given
layer have been processed, they are removed from memory and the exploration
proceeds to the next layer [12]. In conventional state space exploration, the states
are kept in memory to recognise already visited states. However, a monotonic
progress measure guarantees that states which have a progress value that is
strictly less than the minimal progress value of those states for which successors
have not yet been calculated can never be reached again. It is therefore safe to
delete such states from memory which significantly reduces the memory usage
during the state space exploration.

The progress exploited by the sweep-line method and formalised in the form
of a progress measure is defined below in Definition 1 where S denotes the set
of system states, so € S denote the initial state, s —* s’ denotes that s’ € S is
reachable from s € S via some number of transitions, and reach(sg) the set of
states reachable from the initial state.

Definition 1 (Monotonic Progress Measure). A monotonic progress
measure is a tuple P = (O,C,¥) such that O is a set of progress values,
C is a total order on O, and ¥ : S — O is a progress mapping such that
Vs, s € reach(sg) : s =* s’ = W(s) T¥(s). O

A progress measure is non-monotonic when there is at least one regress edge,
i.e., an edge where the source state has a larger progress value than the des-
tination state. A generalised version of the sweep-line method that can handle
non-monotonic progress measures and regress edges also exists [14], but is not the
focus of our work. It was already proved [12] that the sweep-line method guar-
antees full coverage of the state space, and in the case of a monotonic progress
measure it terminates after having explored each reachable state once. In the
case of a non-monotonic progress measures, termination is still guaranteed but
some states may be explored multiple times.

Algorithm 1 based on [12] specifies the sweep-line algorithm for monotonic
progress measures. The algorithm starts with a hash table of visited states and
a priority queue on progress values containing the states that are still to be
processed. Both are initialized at the beginning with the initial state sy (lines
2-3). The progress value for the current (initial) layer 1. is also initialized in
line 4. Then, the algorithm executes a loop (lines 5-28) which ends when all the
reachable states have been processed. For each iteration, we select one of the

168 A. Rodriguez et al.

Data:

Nodes > Hash table of visited states currently stored.
Unprocessed > Priority queue of unprocessed states.
Layer > List of states processed in the current layer.

1 > Progress value for current layer.

@ > Property to be verified.

Result: True if the property is satisfied, false otherwise.

1 begin
2 Nodes.insert(so)
3 Unprocessed.insert(sg)
4 e < P(s0)
5 while —(Unprocessed.isEmpty()) do
/* node with lowest progress measure */
6 s «— Unprocessed.getMinElement()
7 if Y. C 9(s) then
8 if = (checkProperty(Layer, ®@)) then
9 ‘ return false
10 end
11 forall s’ € Layer do
12 | Nodes.delete(s")
13 end
14 Layer «— ()
/* Update progress measure for current layer */
15 Ye —— Y(s)
16 end
17 Layer.insert(s)
/* For every successor state of s */
18 forall (t, ') such that s — s’ do
19 if —(Nodes.contains(s’)) then
20 Nodes.insert(s")
21 if (¢(s) 3 ¢(s)) then
22 ‘ RaiseException(‘Regress edge found’)
23 else
24 | Unprocessed.insert(s’)
25 end
26 end
27 end
28 end
29 return true
30 end

Algorithm 1: Sweep-line algorithm for monotonic progress measures

states with the lowest progress value among the unprocessed states (line 6). The
condition in line 7 checks if the progress value of the layer is strictly less than
the progress value of the selected state; if so, we are about to move into the
next layer. This is the point where we invoke the property-specific CTL model

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 169

checking algorithm for the property @ using the CHECKPROPERTY procedure at
line 8. If the CHECKPROPERTY determines that the property is violated, then we
return false and the algorithm stops. The implementation of CHECKPROPERTY
is the subject of the next section. In line 18, we use s L, ' to denote that the
transition ¢ is enabled in state s, and that the occurrence of ¢ in s leads to the
state s’. If the property is never violated the algorithm returns true at the end
of the execution (line 29).

3 CTL Property Checking Algorithms

CTL [5] is an important branching temporal logic that is sufficiently expressive
for the formulation of an important set of behavioural system properties. Even
though a large set of properties can be specified using the semantics of CTL, there
are some restrictions when applying them with the sweep-line method algorithm.
The challenge of combining CTL model checking with the sweep-line method
is that conventional algorithms for CTL model checking propagate information
backwards from a state to its predecessors [6]. This follows the opposite workflow
than the forward progress-first exploration that the sweep-line method performs.

In this paper, we do not consider the full CTL, but only formulas of the
AG{EF, AF}-fragment that can be obtained from the following grammar, where
p as an atomic state proposition and ¢ is called a state predicate:

S:=AGY|¢
Y i=BF 6| AF 6| 6
pu=pld1 A 2| P1V d2| ¢

The formulas expressing behavioural properties to be verified are interpreted
over the paths of the state space as informally explained below:

Property - AGy “Invariantly”, which holds if 4 holds in all states that are
reachable from the current state.

Property - EF ¢ “Holds potentially” or “possibly”, which holds if it is possible
to find a state reachable from the current state where ¢ holds.

Property - AF ¢ “Holds eventually” which holds if from the current state, a
state satisfying ¢ is always eventually reached.

Property - AG EF ¢ “Always possible”, which holds if from any state reachable
from the current state, a state satisfying ¢ can always be reached.

Property - AG AF ¢ “Always eventually”, which holds if from any state reach-
able from the current state, a state satisfying ¢ is always eventually reached.

We say that a formula (property) @ holds if @ holds in the initial state so. To
model check the AF EF and AG AF properties, we exploit the set of strongly
connected components (SCC). A strongly connected component of a directed
graph is a maximal subgraph determined by nodes that are mutually reachable.
A strongly connected component is terminal if no states in the component has
outgoing edges to states in other components. It should be noted that when

170 A. Rodriguez et al.

checking the AG AF and AF properties we implicitly add a self-loop to any
terminal states, i.e. (deadlocked) states without enabled transitions.

Because of the monotonicity of the progress measure, each strongly connected
component only contains nodes belonging to the same layer and is hence always
contained in a single layer. This is formally stated in the proposition below.

Proposition 1. Let P = (O,C,4¢) a monotonic progress measure, SCC' be the
set of strongly connected components, and let scc € SCC' be a strongly connected
component. Then: Vs, s € scc:(s) = (s').

Proof. Assume that there exists an scc € SCC and states s, s’ € scc such that
P(s) # ¥(s"). Hence either ¢(s) £ ¢(s’) or ¢(s') I 1(s). Since s and s are in
the same scc, then they are mutually reachable and therefore there must exist
a pair of states (s;,s;) on the path from either s to s’ or s’ to s such that
1(s;) Z ¥(s;). This contradicts the fact that the progress measure is monotonic.

Based on this, we can compute the strongly connected components for a given
layer immediately before we delete the nodes in the current layer and move to
the next one. The algorithm checks the property depending on the form of the
property as outlined below.

Property - AG ¢. We check that every node within the layer satisfies ¢. If ¢
does not hold in one of them, we return false and abort the exploration.
Property - EF ¢. If at least one state is encountered that satisfies ¢, then true
is returned and the execution finishes. Thus, false will be returned if at the
end of the exploration not a single state satisfying ¢ has been found.

Property - AG EF ¢. For this property, we first compute the SCC of the
given Layer. The property will not be satisfied and therefore the procedure
will finish the execution returning false, if any scc among the SCC' of Layer
is terminal and ¢ does not hold in any of the states contained in scc.

Property - AG AF ¢. For this property, we first compute the SCC of the
given Layer. We then remove the states that satisfy ¢. If the resulting set of
nodes has a cycle, then the property is violated and therefore the execution
immediately finishes returning false.

Property - AF ¢. This property can be checked in a similar fashion as AG AF ¢
with the modification that we can truncate the search at SC'C where all cycles
include a state satisfying ¢.

The two first properties can easily be checked by just inspecting each state
encountered during the sweep-line state space exploration. For verification of the
two other properties, we invoke the procedure CHECKPROPERTY at the moment
where the algorithm is about the leave the current layer and move into the next
ones. We do not detail the checking of AF ¢ as it is very similar to AG AF ¢ as
explained above.

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 171

A consequence of Proposition 1 is that SC'C can be computed by considering
one layer at a time. Furthermore, Theorem 1 ensures that the sweep-line method
covers all reachable states which means that we will encounter all strongly con-
nected components at some stage. The remaining step consist of linking the
inspection of SCC to the model checking of the AG EF and AG AF properties.
This is done in the proposition below which formalises the requirements infor-
mally introduced above.

Proposition 2. Let SCC be the set of strongly connected components of M,
SCCr C SCC the set of terminal strongly connected components, and let ¢ be
a state predicate. Then:

1. AGEF ¢ is satisfied < Vscc € SCCr 3s € sce: ¢(s)
2. AG AF ¢ is satisfied < Vscc € SCC : sce\ {s € scc: ¢(s)} is acyclic

Proof. First we prove 1. Assume that AG EF ¢ holds and there exists a terminal
sce named sceg such that no states in sce; satisfy ¢. Since all states belong to
some scc, then we can find a path from the initial state to a state s in scc;. Since
scey is terminal and do not contain states satisfying ¢, then we can no longer
reach states that satisfies ¢ from s. Hence, AG EF ¢ cannot hold. Assume that
each terminal scc contains a state satisfying ¢ and let s be any reachable state.
Since we cannot have cycles that spans multiple SCC' and all states belong to
some scc, there must exists a path from the scc to which s belongs to a state s’
in some terminal scc. Within this terminal sce, all states are mutually reachable
and by our assumption at least one state in there satisfies ¢. Hence, AG EF ¢
holds.

Next we prove 2. Assume that AG AF ¢ holds and there exists a scc such that
when all states satisfying ¢ are removed from scc we still have a cycle consisting
of states in scc. In that case, we can find a path sg,s;...s leading to a state
s on this cycle, and we can then extend this to an infinite path by repeating
the states on the cycle to which s belong. Since no state on the cycle satisfy ¢,
then AG AF ¢ cannot hold. Hence, we cannot have such cycles. Assume now
that each strongly connected component becomes acyclic when removing states
satisfying ¢. Since all cycles belongs to some strongly connected component,
then we cannot have cycles where no states satisfy ¢. Thus, from any states on
an infinite path we must eventually encounter a state satisfying ¢ which means
that AG AF ¢ holds.

Based on Proposition 2 we can now specify the CHECKPROPERTY procedure
which is given in Algorithm 2. The procedure first computes the SCC of the
given layer L. Here any algorithm for computing SCC' can be used, and we do
not specify this further. Based on the SCC and Proposition 2, the procedure
then checks whether the property being investigated is violated in which case
false is returned and the entire algorithm terminates. At the end of the algorithm
(line 18), true is returned in case the property was never violated.

172 A. Rodriguez et al.

1 begin
2 SCC «— ComputeSCC(Layer)
3 if = AGEF ¢ then
4 forall scc € SCC do
5 if isTerminal(scc) AVs € scc: —¢(s) then
6 ‘ return false
7 end
8 end
9 end
10 if ® = AG AF ¢ then
11 forall scc € SCC do
12 V «—scc\ {s € scc| p(s)}
13 if hasCycle(V') then
14 ‘ return false
15 end
16 end
17 end
18 return true
19 end

Algorithm 2: Checking strongly connected components of current layer

We have not specified the details of the ISTERMINAL and HASCYCLE pro-
cedures. The ISTERMINAL procedure can be implemented by checking that all
successors of nodes in the scc are contained in the scc. The HASCYCLE procedure
can be implemented by, e.g., a depth-first search of the nodes in V.

The completeness of the basic sweep-line algorithm and Proposition 1 ensures
that all strongly connected components will eventually have been computed and
inspected in Algorithm 2. Furthermore, Algorithm 2 is a direct implementation
of the two properties stated in Proposition 2. We therefore have the following
theorem concerning the correctness of our algorithm:

Theorem 1. Let P = (O,C,v) be a monotonic progress measure, and let & =
AGEF ¢ or ® = AG AF ¢. Then Algorithm 1 terminates and D is satisfied if

and only if the algorithm returns true.

In Algorithm 2 we have separated the computation of SCC' from the check-
ing of the SCC'. As an optimisation it is possible to integrate the checking of
the properties of a scc into the scc computation algorithm. This could make it
possible to check the SCC as they are encountered by the scc-algorithm. As a
further optimisation it is also possible to compute the SCC' as the layer is being
explored and not at the end of exploring a layer. However, for reason of clarity,
we have decided to separate the two steps in the formulation of the algorithm.

As the continuation of the work presented in [17], we have implemented
Algorithm 1 using the Standard ML language, and integrated it into CPN Tools.
This allows us not only to analyse states spaces of models constructed using
CPN Tools taking advantage of the sweep-line method, but also to verify the

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 173

aforementioned behavioural properties. We have also optimised the algorithm, so
every time a property is violated or we know that it cannot be further satisfied,
the execution stops to save time.

4 The CPN MQTT Model

Our aim is to use the property-specific sweep-line model checking algorithms for
CTL from the previous section to verify the key behavioural properties of the
CPN model we have developed of the MQTT protocol [19].

MQTT applies topic-based filtering of messages with a topic being part of
each published message. An MQTT client can subscribe to a topic to receive
messages, publish on a topic, and clients can subscribe to as many topics as they
are interested in. As described in [18], an MQTT client can operate as a publisher
or as a subscriber, and we use the term client to generally refer to a publisher or
a subscriber. The broker [18] is the core of any publish /subscribe protocol and is
responsible for keeping track of subscriptions, receiving and filtering messages,
deciding to which clients they will be dispatched, and sending them to all sub-
scribed clients. The MQTT protocol delivers application messages according to
the three Quality of Service (QoS) levels defined in [2], which are motivated by
the typically needs that IoT applications may have in terms of reliable delivery
of messages.

4.1 Interaction Overview

MQTT defines five main operations: connect, subscribe, publish, unsubscribe
and disconnect. Such operations, except the connect which must be performed
a priori by each of the clients who want to participate in the communication,
are mutually independent and can be triggered in parallel by the clients and
processed by the broker. We have developed the CPN model following modelling
patterns that ensure modularity, and thereby encapsulation of both the protocol
logic and the behaviour of such operations.

In order to show how the clients and the broker interact, we describe the
different actions that clients may carry out by considering an example. Figure 1
shows a sequence diagram for a scenario where two clients connect, perform
subscribe, publish and unsubscribe, and finally disconnect from the broker. The
protocol interaction is as follows:

1. Client 1 and Client 2 request a connection to the Broker.

2. The Broker sends back a connection acknowledgement (CONNACK) to confirm
the establishment of the connection.

3. Client 2 subscribes to topic 1 with a QoS level 1, and the Broker confirms the
subscription with a subscribe acknowledgement message.

4. Client 1 publishes on topic 1 with a QoS level 1. The Broker responds with a
corresponding publish acknowledgement (PUBACK).

5. The Broker transmits the publish message to Client 2 which is subscribed to
the topic.

174 A. Rodriguez et al.

Client 1 Broker Client 2

1- CONNECT
2 - CONNACK

1- CONNECT
2 - CONNACK

3 - SUBSCRIBE(topic(1), QoS(1))
3 - SUBACK (topic(1))

4 - PUBLISH (topic(1), QoS(1))

A\

- PUBLISH (topic(1 1
4 - PUBACK(topic(1),QoS(1)) 5 - PUBLISH (opic(1), QoS(1)

6 - PUBACK(topic(1),QoS(1))

A

7 - UNSUBSCRIBE (topic(1))
7 - UNSBACK(topic(1))

8 - DISCONNECT

8 - DISCONNECT

v

A

Fig. 1. Message sequence diagram illustrating the MQTT phases.

6. Client 2 gets the published message, and sends a publish acknowledgement
back as a confirmation to the Broker that it has received the message.

7. Client 2 unsubscribes to topic 1, and the Broker responds with an unsubscribe
acknowledgement.

8. Client 1 and Client 2 disconnect.

4.2 CPN Model Overview

We now briefly show and discuss the model and its main elements that are
important for the understanding of the work carried out. We refer the reader
to [19] for a detailed description of the MQTT protocol and the MQTT CPN
model. The complete CPN model of the MQTT protocol consists of twenty four
modules organised into six hierarchical levels.

The model is organised following a modelling pattern that ensures modu-
larity and therefore, encapsulation of the protocol logic and behaviour of such
operations. This offers advantages both for readability and understandability of
the model and also, for making it easier to detect and fix errors during the incre-
mental verification. For instance, this has allowed us to make a clear separation
of the different QoS functional logic without having any negative complexity
impact on the model. Note that the verification is incremental in the sense that
we start with a core functionality of the protocol, and then we incrementally add
more operations until we have the complete functionality included. This implies
that we incrementally verify properties associated to each set of the operations.

Figure 2 shows the top-level module of the CPN MQTT model which con-
sists of two substitution transitions (drawn as rectangles with double-lined bor-
ders) representing the Clients and the Broker roles of MQTT. Substitution tran-
sitions constitute the basic syntactical structuring mechanism of CPNs and

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 175

Clients

Client

initMsgQueue() []

(D) [[(client(1),[]),(client(2), ()] @o

ClientxMessages BrokerxMessages

Broker

Broker

Fig. 2. The top-level module of the MQTT CPN model.

each of the substitution transitions has an associated module that models the
detailed behaviour of the clients and the broker, respectively. The name of the
(sub)module associated with a substitution transition is written in the rectan-
gular tag positioned next to the transition.

The two substitution transitions in Fig. 2 are connected via directed arcs to
the two places CtoB and BtoC. The clients and the broker interact by producing
and consuming tokens on the places. The places CtoB and BtoC are designed
to behave as queues. The queue mechanism offers some advantages that the
MQTT specification implicitly indicates. The purpose of this is to ensure the
ordered message distribution as assumed from the transport service on top of
which MQTT operates.

4.3 Client and Broker State Modelling

The colour sets defined for modelling the client state are shown in Fig. 3. The
ClientProcessing submodule in Fig. 4 models all the operations that a client can
carry out. Clients can behave as senders and receivers, and the five substitution
transitions CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE and DISCONNECT have
been constructed to capture both behaviours.

The place Clients (top-left place in Fig. 4) uses a token for each client to
store its respective state during the communication. The State colour set is
an enumeration type containing the values READY (for the initial state), WAIT
(when the client is waiting to be connected), CON (when the client is connected),
and DISC (for when the client has disconnected). The states of the clients are
represented by the ClientxState colour set which is a product of Client and
ClientState. The colour set ClientState is used to represent the state of a
client and consists of a list of TopicxQoS, a State, and a PID. Using this, a
client stores the topics it is subscribed to, and the quality of service level of

176 A. Rodriguez et al.

colset State = with READY | DISC | CON | WAIT;

colset TopicxQoS = product Topic * QoS;
colset ListTopicxQoS = list TopicxQoS;

colset Client = index client with 1..C;

colset ClientState = record topics : ListTopicxQoS *
state : State *
pid : PID;

colset ClientxState = product Client * ClientState;

Fig. 3. Colour set definitions used for modelling client state.

1" (client(1),{topics=[],state=READY,p
id=0})++

oy, 1" (client(2),{topics=[],state=READY,p
o _cients Y@ lig=0n)

A ClientxState

CONNECT ~

CONNECT

PUBLISH ~

PUBLISH

SUBSCRIBE ~

SUBSCRIBE

UNSUBSCRIBE ~

UNSUBSCRIBE

—
D—
D—
e
e

DISCONNECT ~N

DISCONNECT Y

|1‘ [(client(1),[1),(client(2),[1)] @9

N N

ClientxMessages BrokerxMessages

Fig. 4. ClientProcessing submodule.

each subscription. The colour set PID is used for modelling the packet identifiers
which play a central role in the MQTT protocol logic.

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 177

Connected <
C oz Yorm

Y ClientsxState

Process

CONNECT \
ProcessCONNECT

NS
Sy

M
Sy

N
Cad

Process
SUBSCRIBE

ProcessSUBSCRIBE |

Process
PUBLISH \

[ProcessPUBLISH —

~ Process
a UNSUBSCRIBE \

ProcessUNSUBSCRIBE |

Process

-
“"|| DISCONNECT
ProcessDISCONNECT

Y
[(client(1),[1),(client(2),[])}
v IientxMessages

BrokerxMessages

Fig. 5. The BrokerProcessing module.

We have structured the broker similarly as we have done for clients. This can
be seen from Fig. 5 which shows the BrokerProcessing submodule. The Connect-
edClients place keeps the information of all clients as perceived by the broker.
This place is designed as a central storage, and it is used by the broker to dis-
tribute the messages over the network. The broker behaviour is different from
that of the clients, since it will have to manage all the requests and generate
responses for several clients at the same time.

5 Model Checking and Experimental Results

In this section we show how we have performed sweep-line based model checking
of the CPN MQTT model and present the results from the experiments.

5.1 Progress Measure

The first aspect to consider is how to define the progress measure of the model.
Since the model runs in an acyclic configuration there is a final state where all
the clients are disconnected and we take advantage of the PID as a way to keep
track of the evolution of the message interchange. We have therefore defined
the progress measure as a combination of the different states the clients can
go through in conjunction with the PIDs. In the experiments, we consider two

178 A. Rodriguez et al.

clients, so the initial state is made up of two clients in the READY state and PID
= 0 and the final state is reached when both clients are in a DISC state and the
PID = 3.

Our definition of this progress measure over the possible combinations splits
our state space into 100 layers. We have also experimented with other progress
measures specifications, for instance, just taking into account the states or only
the PIDs which for each such separated choice produces a total of 16 layers. In
our experience, there is a trade-off between the granularity and the size of each
layer, and it is up to the analyst to decide depending on the concrete resources.
Since the progress measure is defined such that the progress values are integers,
we have for the states assigned 1 for READY, 2 for WAIT, 3 for CON and 4 for
DISC, and 1 for PID = O, 2 for PID = 1, 3 for PID = 2 and 4 for PID = 4. It
is important to note that the clients cannot backtrack to a previous state nor
to a lower PID. For instance, if client 1 reaches the CON state, it can never be
again in the WAIT state. As we need to keep a global notion of progress, we
compute it using the following equation with ¢; and co being client 1 and client
2, respectively and where B is a base:

Ve = B? x state(cy) + B? x pid(cy) + B' * state(cy) + BY * pid(cz)

Essentially, we interpret the states and the PIDs of the two clients as a number
where B is required to be larger than the number of states of each client. In our
experiments, we have used B = 10, i.e., the decimal numbering system. With
this, we can obtain a progress value for each possibility (between 1111 and 4444)
and respecting the monotonic ordering of non-regress.

As we have implemented the model in a modular and parameterized fashion,
we are able to control several elements, for instance, the number of clients,
the operations those clients can perform (e.g., connect and subscribe), and the
size of the queues for handling messages. Note that, in order to obtain a finite
state space, we have to limit the number of clients and topics, and also bound
the packet identifiers. The packet identifiers are incremented throughout the
execution of the different phases of the protocol, i.e., the connect, subscribe,
data exchange, unsubscribe, and disconnect phases. This means that we cannot
use a single global bound on the packet identifiers as a client could reach this
bound, e.g., already during the publish phase and hence the global bound would
prevent (block) a subsequent unsubscribe to take place. We therefore introduce a
local upper bound on packet identifiers for each phase. This local bound expresses
that the given phase may use packet identifiers up to this local bound. In the
next subsection, we present the results of, first, running the state space using
the sweep-line algorithm, and second, verifying certain behavioural properties.

5.2 Incremental Verification and Properties

We have designed a system to run six incremental executions which gives us more
control to detect errors during the validation of the model and the verification
of the properties. The six different scenarios are wrapped within three different

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 179

steps. In the first step we include only the parts related to clients connecting and
disconnecting. In the second step we add subscribe and unsubscribe, and finally
in the third step we add data exchange considering the three quality of service
levels in turn. At each step, we include verification of additional properties. Below
we briefly discuss the three steps and the properties verified at each step. Note
that properties that reason about clients are verified for each individual client.
In other words, the properties make sure that every client involved satisfies the
property being verified.

Step 1. Connect and Disconnect. In this first step we consider only the part of
the model related to clients connecting and disconnecting to the broker.

S1-P1-ConsistentConnect. The clients and the broker have a consistent view
of the connection state.

S1-P2-ClientsCanConnect. There exists a reachable state in which each client
is connected to the broker.

S1-P3-Consistent Termination. Each terminal state (dead marking) has a
consistent and desired behaviour.

S1-P4-PossibleTermination. The protocol can always be terminated, i.e., a
terminal state (dead marking) can always be reached.

Step 2. Subscribe and Unsubscribe. In this step, we add the ability for the clients
to subscribe and unsubscribe (in addition to connect/disconnect from step 1).

S2-P1-CanSubscribe. There exists states in which both the clients and the
broker sides consider each client to be subscribed.

S2-P2-ConsistentSubscription. In every state there is a consistent subscrip-
tion in both clients and broker sides.

S2-P3-PossiblySubscribed. If the client sends a subscribe message, then even-
tually both the clients and the broker sides will consider the client to be
subscribed.

S2-P4-CanUnsubscribe. For each client there exists executions in which the
client sends an unsubscribe message.

S2-P5-EventuallyUnsubscribed. If the client sends an unsubscribe message,
then eventually that both the clients and the broker sides consider the client
to be unsubscribed.

Step 3. Publish and QoS levels. We add the ability for the clients to publish and
receive messages in addition to the rest of the properties of Steps 1 and 2.

S3-P1-PublishConnect. Each client can publish if it is in a connected state.

S3-P2-CanPublish. There exists an execution in which each client publishes
a message.

S3-P3-CanReceive. For each client there exists an execution in which each
client receives a message.

S3-P4-ReceiveSubscribed. A client only receives data if it is subscribed to
the topic, i.e., the client side considers the client to be subscribed.

180 A. Rodriguez et al.

Table 1 shows the representation of the properties in CTL. Note that the
verified properties have the forms described in Sect. 3. We have marked in Table 1
some properties with “*”. The property S2-P3 has been computed as if it were
an EF property (the same applies to S2-P5). However, this does not completely
verify the property since it only checks that it is possible to find a state where
the client is subscribed. What we really want to check is that we can reach a
state where the client sends a subscribe message, and eventually after that the
client is subscribed in the broker side. The implementation of such properties of
the form AG(® = AF(¥)) is part of our future work.

5.3 Experimental Results

Table 2 summarises the statistics as a result of running the six scenarios, using
both approaches, the traditional CPN state space exploration and the sweep-
line method approach, and verifying the properties aforementioned. The States
and Arcs columns give the number of states and edges, respectively, in the state
space. The Peak column lists the peak number of states stored in memory (i.e.,
the number of states in the largest layer). The Rel. Mem. Reduction column
indicates the reduction of memory as the result of using the sweep-line method,
compared to the total number of states (stored in memory by the tradition
approach). For instance, in row number 5 in Table 2, we have a reduction in
memory consumed of 84.17%, which means that the number of states we have
in memory corresponds to the 15.83% of the total amount of states we would
store using the traditional approach. The TV-Time column amounts the time
that took for the traditional procedure to verify the properties. The SLV-Time
column details the time needed to verify the properties using the sweep-line
approach. Finally, the column Rel. Time Increment gives the relative additional

Table 1. CTL properties verified.

Property | CTL formula Description

S1-P1 AGO @: Consistent connection

S1-P2 EFO @: Each client is connected to the broker

S1-P3 AG(— DM Vv @) | DM: Dead marking | @: desired dead marking
S1-P4 AGEF DM DM: Dead marking (checked in S1-P3 that it is desired)
S2-P1 EFO @: Each client can subscribe

S2-P2 AGO @: Each client is consistently subscribed

S2-P3* | EF® Explanation above

S2-P4 EFO® @: Each client can unsubscribe

S2-P5* | EF® Explanation above

S3-P1 AG (O =VY) ®@: Client connected | ¥: Client can publish

S3-P2 EFO® @: Each client can send a publish

S3-P3 EF® @: Each client can receive a publish

S3-P4 AG (O =VY) ®: Client receives a publish | ¥: Client is subscribed

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 181

Table 2. Results on the six incremental executions using both approaches.

Configuration States | Arcs | Peak | Rel. Mem. | TV-Time | SLV-Time | Rel. Time
Reduction Increment

1. Conn-Disconn 35 48 9| 74.29% 0.00s 0.00s 0%

2. 1 + Subscribe 507 | 1,054 | 180 |64.50% 0.156's 0.219s | 79%

3. 2 4+ Unsubscribe | 1,849 | 4,120 | 300 | 83.78% 1.328s 2.171s | 63.48%

4.3 + Pub QoS 0 4,282 | 8,840 | 71183.4% 4.453s 4.983s |11.9%

5.3 4+ Pub QoS 1 |11,462 23,934 1,815 |84.17% 20.172s | 28.531s | 41.44%

6.3 + Pub QoS 2 |43,791 | 85,682 | 7,037 | 83.93% 168.113s | 250.708s | 49.13%

time that was necessary for the sweep-line method to proceed, compared to the
traditional approach.

The two approaches provided the same results during the evaluation of the
properties, keeping the consistency of the verification process. Even though the
sweep-line is more time consuming, the memory usage was successfully reduced
even in the worst case scenario. The highest relative time consumption is located
in the third row with an increase of 63.48%. However, this should not be taken
completely as reference since the calculation with such a low number of states
and arcs is very sensitive to also the time that takes to compute the state space
and the SCC.

6 Conclusions and Future Work

We have presented the application of the sweep-line method for verifying an
elaborate set of behavioral properties of the MQTT protocol. The application of
the sweep-line method relied on a set of on-the-fly algorithms for model checking
selected CTL behavioral properties. We have compared the application of the
sweep-line method with the application of standard CTL model checking in CPN
Tools demonstrating a substantial reduction in memory usage at the expense
of a modest increase in execution time. The consistency between the results
obtained using conventional CTL model checking and the results obtained with
the implementation of our property-specific CTL model checking algorithms for
the sweep-line method serves as a validation of our new approach.

We see several possible directions for future work based on the results and
experiments presented in this paper. We plan to investigate a more complete
set of scenarios where different configurations are considered. This includes the
number of clients, different progress measures, distinct queue sizes, and the pos-
sibility of retransmitting packets. This is going to be relevant to make other
analysis and study, first, how the number and size of the strongly connected
components affects the sweep-line method and second, how the reduction factor
grows with the value of the parameter. Related to this, there are also several pos-
sibilities for improving the implementation of the property-specific CTL model
checking algorithms that we employ.

182 A. Rodriguez et al.

CTL model checking with the sweep-line method has until now been an open
research problem, and the algorithms presented represents a first step towards
addressing this. The extension of our approach to cover a larger subset of CTL
properties is an important direction of future work. An example is the S2-P3-
EventualSubscribed property discussed in Sect. 5. Properties on this form can be
explored in a two-steps fashion way, where first the property in the left-hand side
of the implication is accomplished, and then a second instance of the state space
is explored, checking whether the property in the right-hand side is satisfied or
not. The work presented in [16] on using tailored model checking algorithms
for different CTL properties could serve as a starting point. A key challenge is
to identity a subset of CTL compatible with the least-progress-first exploration
order of the sweep-line method. In the context of symbolic model checking using
binary-decision diagrams (BDDs), forward CTL model checking algorithms have
been developed [11]. However, the sweep-line method is not compatible with the
use of BDDs. The reason is that deleting states from a BDD (as required by
the sweep-line method) may cause the memory usage for storing the BDD to
increase. This counteracts the idea of how the sweep-line method alleviates the
state explosion problem.

A more open direction of future work is to develop CTL model checking
techniques that can be used for non-monotonic progress measures - and not
only monotonic progress measures as presented in this paper. We see potential
improvements in being capable of including non-monotonic progress measures. It
would significantly expand the class of models that can be analysed, for instance,
we could also run the algorithm in the cyclic version of the CPN MQTT model.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Banks, A., Gupta, R.: MQTT Version 3.1.1. OASIS Stand. 29, 89 (2014). http://
docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

3. Cheng, A., Christensen, S., Mortensen, K.H.: Model checking coloured petri nets
- exploiting strongly connected components. DAIMI Rep. Ser. 26, 519 (1997)

4. Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space
exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
450-464. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_31

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52-71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

6. Clarke, E.M., Emerson, E.A.; Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244-263 (1986)

7. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279-287 (1999)

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://doi.org/10.1007/3-540-45319-9_31
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 183

8.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Clarke, E.M., Klieber, W., Novacek, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1-30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6-1

CPN tools. http://cpntools.org/

Evangelista, S., Kristensen, L.M.: Hybrid on-the-fly LTL model checking with the
sweep-line method. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS,
vol. 7347, pp. 248-267. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31131-4_14

Iwashita, H., Nakata, T., Hirose, F.: CTL model checking based on forward state
traversal. In: Proceedings of International Conference on Computer Aided Design,
pp. 82-87. IEEE Computer Society (1996)

Jensen, K., Kristensen, L., Mailund, T.: The sweep-line state space exploration
method. Theor. Comput. Sci. 429, 169-179 (2012)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3), 213-254 (2007)

Kristensen, L.M., Mailund, T.: A generalised sweep-line method for safety prop-
erties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
549-567. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45614-7_31
Kristensen, L.M., Christensen, S.: Implementing coloured petri nets using a func-
tional programming language. Higher-order Symbolic Comput. 17(3), 207243
(2004)

Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 321-341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_18

Lilleskare, A., Kristensen, L.M., Hgyland, S.-O.: CTL model checking with the
sweep-line state space exploration method. In: Proceedings of Norwegian Infor-
matics Conference (NIK) (2017)

MQTT essentials part 3: Client, broker and connection establishment. https://
www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe

Rodriguez, A., Kristensen, L.M., Rutle, A.: Formal modelling and incremental
verification of the MQTT IoT protocol. In: Koutny, M., Pomello, L., Kristensen,
L.M. (eds.) Transactions on Petri Nets and Other Models of Concurrency XIV.
LNCS, vol. 11790, pp. 126-145. Springer, Heidelberg (2019). https://doi.org/10.
1007/978-3-662-60651-3_5

Rodriguez, A., Kristensen, L.M., Rutle, A.: On CTL model checking of the MQTT
IoT protocol using the sweep-line method. In: Petri Nets and Software Engineering.
International Workshop, PNSE 19, Aachen, Germany, June 24, 2019, volume 2424
of CEUR Workshop Proceedings, pp. 57-72 (2019)

Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206-224.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60385-9_13

Valmari, A.: The state explosion problem. In: Advanced Course on Petri Nets, pp.
429-528. Springer (1996)

Van Leeuwen, J., Leeuwen, J.: Handbook of Theoretical Computer Science, vol. 1.
Mit Press, Elsevier (1990)

Vardi, M.Y.: Branching vs. Linear time: final showdown. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1-22. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45319-9_1

https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
http://cpntools.org/
https://doi.org/10.1007/978-3-642-31131-4_14
https://doi.org/10.1007/978-3-642-31131-4_14
https://doi.org/10.1007/3-540-45614-7_31
https://doi.org/10.1007/978-3-030-21571-2_18
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe
https://doi.org/10.1007/978-3-662-60651-3_5
https://doi.org/10.1007/978-3-662-60651-3_5
https://doi.org/10.1007/3-540-60385-9_13
https://doi.org/10.1007/3-540-45319-9_1

	Verification of the MQTT IoT Protocol Using Property-Specific CTL Sweep-Line Algorithms
	1 Introduction
	2 The Sweep-Line State Space Exploration Method
	3 CTL Property Checking Algorithms
	4 The CPN MQTT Model
	4.1 Interaction Overview
	4.2 CPN Model Overview
	4.3 Client and Broker State Modelling

	5 Model Checking and Experimental Results
	5.1 Progress Measure
	5.2 Incremental Verification and Properties
	5.3 Experimental Results

	6 Conclusions and Future Work
	References

